整合卷积神经网络和神经过程的图像数据补全方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Image Data Complementation Method Integrating Convolutional Neural Network and Neural Process
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    神经过程(NP)能够结合神经网络和高斯过程的优势, 通过少量上下文数据估计不确定性分布函数, 实现函数回归功能. 现已应用于数据补全、分类等多种机器学习任务. 但面对二维数据回归问题(如图像数据补全), 神经过程预测准确度有限且对上下文数据的拟合存在欠缺. 为此, 将卷积神经网络(CNN)整合到神经过程中, 基于证据下界和损失函数推导, 构造了面向图像的神经过程(IFNP)模型.在IFNP基础上, 设计了适用于IFNP的局部池化聚合模块和全局交叉注意力模块, 并构造出性能明显优于NP和IFNP的的面向图像的注意力神经过程(IFANP)模型. 最后, 相关模型应用于MNIST及CelebA数据集, 通过定性与定量分析相结合, 展现出IFNP的可扩展性, 证实了IFANP更佳的数据补全及细节拟合能力.

    Abstract:

    Neural process (NP) combines the advantages of neural networks and Gaussian processes to estimate uncertainty distribution functions from a small number of contexts and implement function regression. It has been applied to a variety of machine learning tasks such as data complementation and classification. However, for 2D data regression problems (e.g., image data completion), the prediction accuracy of NP and the fitting of the contexts are deficient. To this end, an image-faced neural process (IFNP) is constructed by integrating a convolutional neural network (CNN) into the neural process based on the lower bound of evidence and loss function derivation. Then, a local pooled attention (LPA) module and a global cross-attention (GCA) module are designed for the IFNP, and an image-faced attentive neural process (IFANP) model with significantly better performance than the NP and IFNP is constructed. Finally, these models are applied to MNIST and CelebA datasets, and the scalability of IFNP is demonstrated by combining qualitative and quantitative analysis. In addition, the better data completion and detail-fitting ability of IFNP are confirmed.

    参考文献
    相似文献
    引证文献
引用本文

余晓晗,毛绍臣,王磊,崔静,于坤.整合卷积神经网络和神经过程的图像数据补全方法.计算机系统应用,2023,32(1):135-145

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-25
  • 最后修改日期:2022-05-22
  • 录用日期:
  • 在线发布日期: 2022-08-12
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号