摘要:针对当前去雾方法存在雾残留、颜色失真等问题, 结合生成对抗网络在图像超分辨率重建的优势, 提出基于通道注意力与条件生成对抗网络图像去雾算法(CGAN-ECA). 网络基于编码-解码结构, 生成器设计多尺度残差模块(multi-scale residual block, MRBlk)和高效通道注意力模块(efficient channel attention, ECA)扩大感受野, 提取多尺度特征, 动态调整不同通道权重, 提高特征利用率. 使用马尔可夫判别器分块评价图像, 提高图像判别准确率. 损失函数增加内容损失, 减少去雾图像的像素和特征级损失, 保留图像更多的细节信息, 实现高质量的图像去雾. 在公开数据集RESIDE实验结果表明, 提出的模型相比于DCP、AOD-Net、DehazeNet和GCANet方法峰值信噪比和结构相似性分别平均提高36.36%, 8.80%, 改善了颜色失真和去雾不彻底的现象, 是一种有效的图像去雾算法.