融合残差上采样结构的P2Net无监督单目深度估计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金联合基金(U20A20293)


Unsupervised Monocular Depth Estimation with P2Net Incorporating Residual Upsampling Structure
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    单目深度估计是计算机视觉领域中的一个基本问题, 面片匹配与平面正则化网络(P2Net)是现阶段最先进的无监督单目深度估计方法之一. 由于P2Net中深度预测网络所采用的上采样方法为计算过程较为简单的最近邻插值算法, 使得预测深度图的生成质量较差. 因此, 本文基于多种上采样算法构建出残差上采样结构来替换原网络中的上采样层, 以获取更多特征信息, 提高物体结构的完整性. 在NYU-Depth V2数据集上的实验结果表明, 基于反卷积算法、双线性插值算法和像素重组算法的改进P2Net网络相较原网络在均方根误差RMSE指标上分别降低了2.25%、2.73%和3.05%. 本文的残差上采样结构提高了预测深度图的生成质量, 降低了预测误差.

    Abstract:

    Monocular depth estimation is a fundamental problem in computer vision, and the patch-match and plane-regularization network (P2Net) is one of the most advanced unsupervised monocular depth estimation methods. As the nearest neighbor interpolation algorithm, the upsampling method adopted by the depth prediction network of P2Net, has a relatively simple calculation process, the predicted depth maps have a poor generation quality. Therefore, the residual upsampling structure based on multiple upsampling algorithms is constructed in this study to replace the upsampling layer of the original network for more feature information and higher integrity of the object structure. The experimental results on the NYU-Depth V2 dataset reveal that compared with the original network, the improved P2Net based on the transposed convolution, bilinear interpolation, and PixelShuffle can reduce the root mean square error (RMSE) by 2.25%, 2.73%, and 3.05%, respectively. The residual upsampling structure in this study improves the generation quality of the predicted depth maps and reduces the prediction error.

    参考文献
    相似文献
    引证文献
引用本文

刘安旭,黎向锋,刘晋川,赵康,李高扬,左敦稳.融合残差上采样结构的P2Net无监督单目深度估计.计算机系统应用,2022,31(11):365-372

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-02-15
  • 最后修改日期:2022-03-14
  • 录用日期:
  • 在线发布日期: 2022-07-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号