基于机器视觉的台架上钢坯位置分割
作者:

Position Segmentation of Billet on Bench Based on Machine Vision
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    钢坯通过航车从库存调度到台架, 然后从台架经轨道到达炉前, 以往是人工控制机械将台架上的钢坯推到轨道上的. 这个过程的自动化实现需要知道钢坯在台架上的实时的位置分布, 以便于自动控制推钢机. 本文通过机器视觉方法实现台架上钢坯的实时定位, 提出了以U-Net为基础网络, 结合经典ResNet网络中的残差块, 实现了钢坯横向位置的精确分割. 实验结果和现场应用测试表明, 本文方法的分割精度能够达到工业现场的控制需求.

    Abstract:

    A billet is dispatched from the inventory to the bench by a crane and then from the bench to the front of the furnace through a track. In the past, the billet was pushed onto the track by the manual control of machinery. The automation of this process requires knowledge of the real-time position distribution of billets on the bench for automatic control of the pusher. In this study, the real-time positioning of billets on the bench is achieved by the machine vision method. Specifically, with the U-Net as the basic network, the residual blocks in classic ResNet are used to achieve the accurate segmentation of transverse positions of billets. The experimental results and field application tests indicate that the segmentation accuracy of this method can meet the control requirements of industrial fields.

    参考文献
    [1] 1罗建豪, 吴建鑫. 基于深度卷积特征的细粒度图像分类研究综述. 自动化学报, 2017, 43(8): 1306–1318
    [2] Bouthemy P, Francois E. Motion segmentation and qualitative dynamic scene analysis from an image sequence. International Journal of Computer Vision, 1993, 10(2): 157–182. [doi: 10.1007/BF01420735
    [3] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110. [doi: 10.1023/B:VISI.0000029664.99615.94
    [4] 张晓, 丁云峰. 基于改进Faster-RCNN的IT设备图像定位与识别. 计算机系统应用, 2021, 30(9): 288–294. [doi: 10.15888/j.cnki.csa.008077
    [5] Everingham M, Eslami SMA, van Gool L, et al. The PASCAL visual object classes challenge: A retrospective. International Journal of Computer Vision, 2015, 111(1): 98–136. [doi: 10.1007/s11263-014-0733-5
    [6] Uijlings JRR, van de Sande KEA, Gevers T, et al. Selective search for object recognition. International Journal of Computer Vision, 2013, 104(2): 154–171. [doi: 10.1007/s11263-013-0620-5
    [7] Gould S, He XM. Scene understanding by labeling pixels. Communications of the ACM, 2014, 57(11): 68–77. [doi: 10.1145/2629637
    [8] Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. [doi: 10.1109/TSMC.1979.4310076
    [9] 王骏, 王士同, 邓赵红, 等. 面向小目标图像的快速核密度估计图像阈值分割算法. 自动化学报, 2012, 38(10): 1679–1689
    [10] Lakshmi S, Sankaranarayanan DV. A study of edge detection techniques for segmentation computing approaches. International Journal of Computer Applications, 2010, CASCT(1): 35–41. [doi: 10.5120/993-25
    [11] Adams R, Bischof L. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(6): 641–647. [doi: 10.1109/34.295913
    [12] Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527–1554. [doi: 10.1162/neco.2006.18.7.1527
    [13] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2012. 1097–1105.
    [14] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2014. 1409–1556.
    [15] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [16] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015. 234–241.
    [17] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    相似文献
    引证文献
引用本文

张哲,邵允学,吕刚.基于机器视觉的台架上钢坯位置分割.计算机系统应用,2022,31(10):254-260

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-14
  • 最后修改日期:2022-03-21
  • 在线发布日期: 2022-07-07
文章二维码
您是第11184147位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号