摘要:在自动驾驶应用场景下, 将YOLOv5应用于目标检测中, 性能较之前版本有明显的提升, 但在高运行速度情况下检测精度仍不够高, 本文提出一种基于改进YOLOv5的车辆端目标检测方法. 为解决训练不同数据集时需手动设计初始锚框大小, 引入自适应锚框计算. 在主干网络(backbone)添加压缩与激励模块(squeeze and excitation, SE), 筛选针对通道的特征信息, 提升特征表达能力. 为了提升检测不同大小物体时的精度, 将注意力机制与检测网络融合, 把卷积注意力模块 (convolutional block attention module, CBAM)与Neck部分融合, 使模型在检测不同大小的物体时能关注重要的特征, 提升特征提取能力. 在主干网络中使用空间金字塔池化SPP模块, 使得模型输入可以输入任意图像高宽比和大小. 在激活函数方面, 进行卷积操作后使用Hardswish激活函数, 应用于整个网络模型. 在损失函数方面, 使用CIoU作为检测框回归的损失函数, 改善定位精度低和训练过程中目标检测框回归速度慢的问题. 实验结果表明, 改进后的检测模型在KITTI 2D数据集上测试, 目标检测的精确率(precision)提高了2.5%, 召回率(recall)提高了5.1%, 平均精度均值(mean average precision, mAP)提高了2.3%.