摘要:在针对将核主元分析(kernel principal components analysis, KPCA)与基于高斯分布的控制限(control limits, CLS)相结合会降低其性能的问题, 提出了一种基于核主元分析与核密度估计(kernel principal components analysis-kernel density estimation, KPCA-KDE)相结合的非线性过程故障监测与识别方法. 该方法采用核密度估计(kernel density estimation, KDE)技术来估计基于KPCA的非线性过程监控的CLS. 通过研究KPCA和KPCA-KDE所有20个故障的检出率发现, 与相应的基于高斯分布的方法进行比较, KDE具有较高的故障检出率; 此外, 基于KDE的检测延迟等于或低于其他方法. 通过改变带宽和保留的主元数量进行故障检测, KPCA记录的FAR值较高, 相反, KPCA-KDE方法仍然没有记录任何假报警. 在田纳西伊斯曼过程(Tennessee Eastman, TE)上的应用表明, KPCA-KDE比基于高斯假设的CLS的KPCA在灵敏度和检测时间上都具有更好的监控性能.