基于核主元分析与核密度估计的非线性过程故障监测与识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61174123); 广东省自然科学基金(S2013010015007)


Nonlinear Process Fault Identification and Detection Based on KPCA-KDE
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在针对将核主元分析(kernel principal components analysis, KPCA)与基于高斯分布的控制限(control limits, CLS)相结合会降低其性能的问题, 提出了一种基于核主元分析与核密度估计(kernel principal components analysis-kernel density estimation, KPCA-KDE)相结合的非线性过程故障监测与识别方法. 该方法采用核密度估计(kernel density estimation, KDE)技术来估计基于KPCA的非线性过程监控的CLS. 通过研究KPCA和KPCA-KDE所有20个故障的检出率发现, 与相应的基于高斯分布的方法进行比较, KDE具有较高的故障检出率; 此外, 基于KDE的检测延迟等于或低于其他方法. 通过改变带宽和保留的主元数量进行故障检测, KPCA记录的FAR值较高, 相反, KPCA-KDE方法仍然没有记录任何假报警. 在田纳西伊斯曼过程(Tennessee Eastman, TE)上的应用表明, KPCA-KDE比基于高斯假设的CLS的KPCA在灵敏度和检测时间上都具有更好的监控性能.

    Abstract:

    The combination of kernel principal components analysis (KPCA) and control limits (CLS) based on Gaussian distribution will undermine the performance. The fault detection and identification method for nonlinear process based on kernel principal components analysis-kernel density estimation (KPCA-KDE) is proposed. kernel density estimation (KDE) technology is adopted to estimate the CLS based on KPCA for nonlinear process monitoring. According to the detection rate of all 20 faults in KPCA and KPCA-KDE, KDE has a higher fault detection rate than the corresponding method based on Gaussian distribution. In addition, KDE-based detection delay is equal to or lower than other methods. By changing the bandwidth and the number of reserved pivots during the fault detection, KPCA records a larger FAR while the KPCA-KDE does not record any false alarms. The application on the Tennessee Eastman (TE) process shows that KPCA-KDE has better monitoring performance in sensitivity and detection time than KPCA based on Gaussian CLS.

    参考文献
    相似文献
    引证文献
引用本文

郑天标,肖应旺.基于核主元分析与核密度估计的非线性过程故障监测与识别.计算机系统应用,2022,31(10):329-334

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-13
  • 最后修改日期:2022-02-17
  • 录用日期:
  • 在线发布日期: 2022-07-15
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号