基于XGBoost-PredRNN++的海表面温度预测
作者:
基金项目:

国家自然科学基金(61872072); 国家重点研发计划(2019YFB1405302, 2016YFC1401900)


Sea Surface Temperature Prediction Based on XGBoost-PredRNN++
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    准确预测海表面温度对于海洋渔业生产、海洋动力环境信息预测预报等至关重要. 传统数值预报方法计算代价大、时效差, 而现有基于数据驱动的海表温预测方法大都针对单个观测点进行海表温预测, 不适合预测由多个观测点构成的某个区域的海表面温度, 而现有的区域海表温预测方法的预测精度仍然有待提高. 为此, 本文提出了一种基于XGBoost结合PredRNN++的区域海表温预测方法(XGBoost-PredRNN++), 该方法首先将海表面温数据处理成灰度图片, 然后利用XGBoost模型来提取每个点的时间特征; 在此基础上, 采用CNN网络将时间特征融合到原始海表温数据中, 同时提取出海表温数据之间的空间依赖关系; 最后利用PredRNN++时间序列预测模型提取整个海表温序列之间的时空关联关系, 从而实现了区域海表温度的高精度预测. 一系列实验结果表明, 本文提出的方法具有较高预测精度和效率, 明显优于现有预测方法.

    Abstract:

    Accurate prediction of sea surface temperature (SST) is vital for marine fishery production and the prediction of marine dynamic environment information. The traditional numerical prediction methods have high calculation costs and low time efficiency. However, the existing data-driven SST prediction methods mainly target the single observation point and fail when it comes to a sea region composed of multiple observation points. The existing regional SST prediction methods still have a long way to go in prediction accuracy. Therefore, we propose a regional SST prediction method based on XGBoost and PredRNN++ (XGBoost-PredRNN++). The method firstly converts SST data into gray images and then extracts the time characteristics of each point by the XGBoost model. On this basis, the CNN network is utilized for fusing the time characteristics into the original SST data, and the spatial dependence is extracted at the same time. Finally, the latest time series prediction model PredRNN++ is adopted to extract the temporal and spatial correlations among SST data to achieve the high-precision prediction of regional SST. The experimental results show that the high prediction accuracy and efficiency of the proposed method are superior to those of the existing methods.

    参考文献
    [1] 李嘉康, 赵颖, 廖洪林, 等. 基于改进EMD算法和BP神经网络的SST预测研究. 气候与环境研究, 2017, 22(5): 587–600. [doi: 10.3878/j.issn.1006-9585.2017.16180
    [2] Xiao CJ, Chen NC, Hu CL, et al. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environmental Modelling & Software, 2019, 120: 104502
    [3] Patil K, Deo MC, Ravichandran M. Prediction of sea surface temperature by combining numerical and neural techniques. Journal of Atmospheric and Oceanic Technology, 2016, 33(8): 1715–1726. [doi: 10.1175/JTECH-D-15-0213.1
    [4] Xue Y, Leetmaa A. Forecasts of tropical Pacific SST and sea level using a Markov model. Geophysical Research Letters, 2000, 27(17): 2701–2704. [doi: 10.1029/1999GL011107
    [5] Lins ID, Das Chagas Moura M, Silva MA, et al. Sea surface temperature prediction via support vector machines combined with particle swarm optimization. Proceedings of the 10th International Probabilistic Safety Assessment & Management Conference. Shanghai: PSAM, 2010. 956–966.
    [6] 周志华, 陈世福. 神经网络集成. 计算机学报, 2002, 25(1): 1–8. [doi: 10.3321/j.issn:0254-4164.2002.01.001
    [7] Zhang Q, Wang H, Dong JY, et al. Prediction of sea surface temperature using long short-term memory. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745–1749. [doi: 10.1109/LGRS.2017.2733548
    [8] Mu B, Li J, Yuan SJ, et al. Prediction of North Atlantic oscillation index associated with the sea level pressure using DWT-LSTM and DWT-ConvLSTM networks. Mathematical Problems in Engineering, 2020, 2020: 2413041
    [9] 张驰, 孙佳龙, 秦江涛, 等. 基于支持向量回归的海洋次表层温度异常预测. 江苏海洋大学学报(自然科学版), 2020, 29(2): 50–57
    [10] 吴琦. 基于深度学习的海洋表面温度预测方法研究[硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020
    [11] 韩震, 张雪薇, 周玮辰. 一种基于遥感数据的多层ConvLSTM海表面温度预测计算方法: 中国, 202011235234.6, 2021-03-23.
    [12] Wang YB, Gao ZF, Long MS, et al. PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. Proceedings of the 35th International Conference on Machine Learning. Stockholm: ICML, 2018. 5123–5132.
    [13] Chen TQ, Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016. 785–794.
    [14] Qiao BY, Wu ZQ, Tang Z, et al. Sea surface temperature prediction approach based on 3D CNN and LSTM with attention mechanism. 2021 23rd International Conference on Advanced Communication Technology (ICACT). PyeongChang: IEEE, 2021. 342–347.
    [15] Wang YB, Long MS, Wang JM, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017. 879–888.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杜扬帆,伍孝飞,乔百友.基于XGBoost-PredRNN++的海表面温度预测.计算机系统应用,2022,31(10):236-244

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-07
  • 最后修改日期:2022-02-17
  • 在线发布日期: 2022-07-07
文章二维码
您是第11185678位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号