摘要:多维数据的发布与分析可以产生巨大的价值, 但在数据收集阶段时常发生隐私泄露的问题. 传统的中心化差分隐私保护方法要求一个完全可信的第三方数据收集者来收集数据, 但在现实中很难找到一个完全可信的第三方数据收集者. 随着属性维度的增加, 数据收集者的求精处理工作(联合分布的计算)也成了一个亟待解决的问题. 针对上述问题提出一种适用于多值数据的本地化差分隐私保护算法(RR-LDP), 引入一元编码和瞬时随机响应技术用来在数据收集阶段保护个人隐私, 降低了通信开销; 在满足LDP的情况下, 结合期望最大化(EM)算法和LASSO回归模型, 提出了高效的多维数据联合分布估计算法(LREMH). 该算法用LASSO回归模型估计初始值, 用EM算法进行迭代计算. 理论分析和实验结果表明LREMH算法在精度和效率之间取得了平衡.