基于Retina-GAN的视网膜图像血管分割
作者:

Vessel Segmentation in Retinal Image Based on Retina-GAN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    对于一些可以从视网膜血管观测到的眼科疾病, 眼底图像起着关键的作用, 能够为专业的医科人员提供有效的参考, 然而手工标注血管费时费力, 且工作量较大, 所以实现自动智能的血管分割方法对相关人员大有裨益. 本文将Attention机制与RU-Net结构融合应用到生成对抗网络(generative adversarial network, GAN)的生成器中, 形成了一种新的结构——Retina-GAN. 同时在对眼底图像的预处理步骤上选择了自动色彩均衡 (ACE), 提高图像对比度, 使血管更加清晰. 为了验证所提出的方法, 选用DRIVE数据集, 并把Retina-GAN与其他研究比照, 测量分析了算法准确性、灵敏度和特异度. 实验数据显示Retina-GAN比其他模型具有更好的性能.

    Abstract:

    For finding the ophthalmic diseases that can be observed from retinal vessels, fundus images play a key role and provide an effective reference for professional medical personnel. However, manual vessel segmentation has a large workload, which is time-consuming and laborious. Therefore, developing an automatic and intelligent segmentation method is of great benefit to relevant personnel. In this study, the attention mechanism and RU-Net structure are integrated into the generator of generative adversarial networks (GANs), forming a new structure—Retina-GAN. At the same time, automatic color equalization (ACE) is selected in the preprocessing of fundus images to improve image contrast and make blood vessels clearer. To validate the proposed approach, we compared the Retina-GAN with some other models on DRIVE datasets. Accuracy, sensitivity, and specificity are measured for comparative analysis. The experiment shows that Retina-GAN has better performance than other models.

    参考文献
    [1] Khan MI, Shaikh H, Mansuri AM. A review of retinal vessel segmentation techniques and algorithms. International Journal of Computer Technology & Applications, 2011, 2(5): 1140–1144
    [2] 高向军. 基于多尺度线性检测的视网膜血管分割. 科学技术与工程, 2013, 13(23): 6820–6824. [doi: 10.3969/j.issn.1671-1815.2013.23.030
    [3] 王爱华. 基于Curvelet变换和形态学的视网膜血管分割[硕士学位论文]. 武汉: 华中科技大学, 2013.
    [4] Chaudhuri S, Chatterjee S, Katz N, et al. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging, 1989, 8(3): 263–269. [doi: 10.1109/42.34715
    [5] Wang SL, Yin YL, Cao GC, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing, 2015, 149: 708–717. [doi: 10.1016/j.neucom.2014.07.059
    [6] Fu HZ, Xu YW, Lin S, et al. DeepVessel: Retinal vessel segmentation via deep learning and conditional random field. Proceedings of the 19th International Conference on Medical Image Computing and Computer-assisted Intervention. Athens: Springer, 2016. 132–139.
    [7] 吴晨玥, 易本顺, 章云港, 等. 基于改进卷积神经网络的视网膜血管图像分割. 光学学报, 2018, 38(11): 125–131
    [8] Rammy SA, Abbas W, Hassan NU, et al. CPGAN: Conditional patch-based generative adversarial network for retinal vessel segmentation. IET Image Processing, 2020, 14(6): 1081–1090. [doi: 10.1049/iet-ipr.2019.1007
    [9] 钟文煜, 冯寿廷. 改进型UNet: 一种高效准确的视网膜血管分割方法. 光学技术, 2019, 45(6): 744–748
    [10] Gatta C, Rizzi A, Marini D. ACE: An automatic color equalization algorithm. Proceedings of the 1st European Conference on Colour in Graphics, Imaging, and Vision, CGIV 2002. Poitiers: The Society for Imaging Science and Technology, 2002. 316–320.
    [11] Alom MZ, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation. Journal of Medical Imaging, 2019, 6(1): 014006
    [12] Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial net. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014. 2672–2680.
    [13] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv: 1411.1784, 2014.
    [14] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR, 2017. 214–223.
    [15] Isola P, Zhu JY, Zhou TH, et al. Image-to-image translation with conditional adversarial networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5967–5976.
    [16] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. Proceedings of the 4th International Conference on Learning Representations. San Juan, 2016.
    [17] Rizzi A, Gatta C, Marini D. From retinex to automatic color equalization: Issues in developing a new algorithm for unsupervised color equalization. Journal of Electronic Imaging, 2004, 13(1): 75–84. [doi: 10.1117/1.1635366
    [18] Getreuer P. Automatic color enhancement (ACE) and its fast implementation. Image Processing on Line, 2012, 2: 266–277. [doi: 10.5201/ipol.2012.g-ace
    [19] Liang M, Hu XL. Recurrent convolutional neural network for object recognition. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3367–3375.
    [20] 李毅泉. 基于注意力机制的显著区域提取研究和实现[硕士学位论文]. 北京: 北京交通大学, 2007.
    [21] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [22] 滕梓晴. 基于深度学习的视网膜视盘与血管分割[硕士学位论文]. 南昌: 南昌大学, 2020.
    [23] 张天琦. 基于深度学习的视网膜血管图像分割研究[硕士学位论文]. 重庆: 重庆大学, 2019.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

侯松辰,张俊虎.基于Retina-GAN的视网膜图像血管分割.计算机系统应用,2022,31(7):372-378

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-25
  • 最后修改日期:2021-11-29
  • 在线发布日期: 2022-04-18
文章二维码
您是第11184995位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号