摘要:集成学习被广泛用于提高分类精度, 近年来的研究表明, 通过多模态扰乱策略来构建集成分类器可以进一步提高分类性能. 本文提出了一种基于近似约简与最优采样的集成剪枝算法(EPA_AO). 在EPA_AO中, 我们设计了一种多模态扰乱策略来构建不同的个体分类器. 该扰乱策略可以同时扰乱属性空间和训练集, 从而增加了个体分类器的多样性. 我们利用证据KNN (K-近邻)算法来训练个体分类器, 并在多个UCI数据集上比较了EPA_AO与现有同类型算法的性能. 实验结果表明, EPA_AO是一种有效的集成学习方法.