发动机故障领域知识图谱构建与应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFB1703104); 国家自然科学基金 (61671157)


Construction and Application of Knowledge Graph in Diesel Engine Fault Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    发动机生产故障和售后维修报告中有大量动力总成和零部件故障信息. 本文将知识图谱引入柴油发动机故障领域, 设计发动机故障领域知识图谱构建的系统流程, 针对多源故障数据进行本体建模. 使用BERT和BiLSTM-CRF结合的实体识别框架, 挖掘故障数据中的专家知识. 提出实体相关性评价指标FF-IEF, 并基于知识图谱和贝叶斯网络进行故障诊断. 设计并开发EFKG原型系统, 共包含12534个实体和408972条三元组, 该系统提供知识抽取、可视化检索、辅助决策等功能, 有效提高信息检索和维修效率, 对知识图谱在发动机故障领域的应用具有一定指导意义.

    Abstract:

    There is a large amount of failure information from the engine after-sales maintenance and failure reports. This study introduces knowledge graphs and designs a systematic building procedure for the field of engine fault. It carries out ontology modeling for the multi-source fault data. The entity recognition framework that combines BERT with BiLSTM-CRF is used to mine expert knowledge in fault data. The index FF-IEF (fault frequency-inverse event frequency) is proposed, and fault diagnosis is performed based on the knowledge graph and Bayesian network. We design and develop the prototype system EFKG that contains 12534 entities and 408972 triplets. The system provides knowledge extraction, visual retrieval, and auxiliary decision-making. It can effectively improve the efficiency of information retrieval and maintenance and is of guiding significance for the application of knowledge graphs in the field of engine fault.

    参考文献
    相似文献
    引证文献
引用本文

许驹雄,李敏波,刘孟珂,曹志月,唐波,葛浩.发动机故障领域知识图谱构建与应用.计算机系统应用,2022,31(7):66-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-20
  • 最后修改日期:2021-11-18
  • 录用日期:
  • 在线发布日期: 2022-03-18
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号