摘要:为实现在海量网格事件库中快速、准确地检索事件, 本文提出一种基于关键词生成的网格事件相似度并行计算方法. 该方法通过双向LSTM网络的编码器和单向LSTM网络的解码器构建指针生成网络生成事件关键词, 使用记忆网络作为指针生成网络的序列信息存储单元, 并将注意力机制用在输入序列上以将更重要的信息输入至解码器, 同时引入覆盖机制来解决生成重复文本问题. 在生成事件关键词后, 基于结构相似度和情境相似度计算事件总体相似度, 并利用GPU对LSTM网络和相似度计算进行加速. 实验结果表明: 相比基于机器学习的计算方法, 该方法在事件相似度计算性能上更好, 最高获得了4.04倍的加速比.