Stacking集成学习模型在混合式成绩分类预测中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省高等学校自然科学研究面上项目(19KJB520044); 江苏省应用型本科院校建设与发展研究课题(2019yl17); 江苏省产学研合作项目(BY2019113); 江苏省高等学校大学生创新创业训练计划 (202113982023Y)


Application of Stacking Ensemble Learning Model in Blended Performance Classification and Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有单一算法模型在成绩预测时存在泛化能力不强的问题, 提出一种基于多算法融合的Stacking集成学习模型, 用于混合式教学中学生成绩的预测. 模型以多项式朴素贝叶斯、AdaBoost和Gradient boosting为初级学习器, 逻辑斯蒂回归为次级学习器组成两层融合框架. 通过混合式教学过程中所产生的学习行为数据对模型进行验证. 实验表明, Stacking集成学习模型在测试集上分类预测准确率达到76%, 分别高于多项式朴素贝叶斯、AdaBoost、Gradient boosting和逻辑斯蒂回归4个单一算法模型5%、6%、9%和6%. 与单一算法模型相比, Stacking集成学习模型有着较强的泛化能力, 能更好地预测学生成绩, 为混合式教学的学习预警提供参考.

    Abstract:

    To tackle the problem that existing single algorithm models have poor generalization ability in performance prediction, this study proposes a Stacking ensemble learning model based on multi-algorithm fusion for the prediction of students’ performance in blended teaching. The model uses polynomial naive Bayes, AdaBoost and Gradient boosting as primary learners and logistic regression as secondary learners to form a two-level fusion framework. The model is verified by the learning behavior data generated in the process of blended teaching. Experimental results show that the classification and prediction accuracy of the Stacking ensemble learning model on the test set reaches 76%, which is 5%, 6%, 9% and 6% higher than that of the four single algorithm models of polynomial naive Bayes, AdaBoost, Gradient boosting and logistic regression, respectively. Compared with these single algorithm models, the Stacking ensemble learning model has strong generalization ability, which can better predict students’ performance and provide a reference for the learning warning of blended teaching.

    参考文献
    相似文献
    引证文献
引用本文

章刘,陈逸菲,袁加伟,裴梓权,梅鹏江. Stacking集成学习模型在混合式成绩分类预测中的应用.计算机系统应用,2022,31(7):325-332

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-24
  • 最后修改日期:2021-11-08
  • 录用日期:
  • 在线发布日期: 2022-05-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号