摘要:针对学生课堂行为状态识别准确率较低的问题, 提出一种基于YOLOv4的改进模型. 通过建立学生课堂行为状态数据集, 调整YOLOv4算法训练模型的参数, 修改卷积块激活函数为ELU函数以优化模型, 同时提出将DIoU-Soft-NMS作为非极大值抑制机制, 识别分析教室中学生课堂行为状态; 根据各状态持续时长及状态变化频率计算学生听课有效时长, 并参考山东高考赋分原则, 建立学生课堂注意力量化评价准则, 同时建立教师课堂授课效果量化评价标准. 实验结果表明, 以同一评价指标衡量模型, 该模型在学生课堂行为检测速率不变的情况下, 平均精度均值(mAP)达到98.8%, 比原YOLOv4模型提升了3.53%, 学生服课堂注意力量化评价准则, 有较高的契合度.