基于滑动窗口和LSTM自动编码器的渔船作业类型识别
作者:
基金项目:

国家自然科学基金(61806107)


Fishing Vessel Operation Type Identification Based on Sliding Window and LSTM Auto-encoder
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    过度捕捞和非法捕捞给海洋生态造成严重破坏, 随着船舶自动识别系统(AIS)的发展, 国内外学者基于AIS轨迹数据提出了许多算法进行渔船作业类型识别, 但是这些算法忽视了轨迹的时域特征. 因此, 本文提出了一种基于滑动窗口和LSTM自动编码器的识别算法, 该算法首先使用滑动窗口提取轨迹特征, 再通过LSTM自动编码器去学习轨迹的时域特征和潜在的高级特征, 最后在LSTM自动编码器中嵌入Softmax分类器, 联合优化损失函数, 使分类效果达到最优. 在浙江海域的渔船AIS轨迹数据上进行了实验, 结果表明所提方法的准确率为95.82%, 证明了本方法的有效性和可靠性, 算法可用于辅助拖网、围网作业类型的判断.

    Abstract:

    Overfishing and illegal fishing have caused serious damage to marine ecology. With the development of the automatic identification system (AIS) on vessels, scholars have proposed plenty of algorithms based on AIS trajectory data to identify the operation types of fishing vessels. However, these algorithms ignore the temporal features of the trajectory. Therefore, this study puts forward the identification of operation type based on the sliding window and LSTM auto-encoder. Firstly, it utilizes the sliding window to extract trajectory features and then uses an LSTM auto-encoder to learn the temporal features and potential advanced features of trajectories. Finally, the Softmax classifier is embedded in the LSTM auto-encoder to jointly optimize the cost function, achieving the best classification. The algorithm is verified based on AIS trajectory data of fishing vessels in the Zhejiang sea area, China. The results show that the accuracy is 95.82%, which proves the effectiveness and reliability of the proposed algorithm. The algorithm can be used to assist in judging the operation type of trawl and purse seine.

    参考文献
    [1] 农村农业部渔业渔政管理局. 2020年全国渔业经济统计公报. 中国水产, 2021, (8): 11–12
    [2] Omar JA, Abdirahman MA, Bambale SA. Impacts of Illegal, Unreported and Unregulated (IUU) fishing on developing countries: The case of Somalia. Asian Research Journal of Arts & Social Sciences, 2019, 9(4): 1–15
    [3] Petrossian GA. Preventing illegal, unreported and unregulated (IUU) fishing: A situational approach. Biological Conservation, 2015, 189: 39–48. [doi: 10.1016/j.biocon.2014.09.005
    [4] Zhao Z, Ji KF, Xing XW, et al. Ship surveillance by integration of space-borne SAR and AIS-further research. Journal of Navigation, 2014, 67(2): 295–309. [doi: 10.1017/S0373463313000702
    [5] 刘磊, 初秀民, 蒋仲廉, 等. 基于KNN的船舶轨迹分类算法. 大连海事大学学报, 2018, 44(3): 15–21
    [6] Gerritsen H, Lordan C. Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES Journal of Marine Science, 2011, 68(1): 245–252. [doi: 10.1093/icesjms/fsq137
    [7] Souza EN, Boerder K, Matwin S, et al. Improving fishing pattern detection from satellite AIS using data mining and machine learning. PLoS One, 2016, 11(7): e0158248. [doi: 10.1371/journal.pone.0158248
    [8] Huang HG, Hong F, Liu J, et al. FVID: Fishing vessel type identification based on VMS trajectories. Journal of Ocean University of China, 2019, 18(2): 403–412. [doi: 10.1007/s11802-019-3717-9
    [9] Gao BT, Wang L, Zhai ZG. Identification algorithm of fishing vessel operation type based on feature fusion. IEEE International Conference on Artificial Intelligence and Information Systems. Dalian: IEEE, 2020. 230–234.
    [10] Guan YN, Zhang J, Zhang X, et al. Identification of fishing vessel types and analysis of seasonal activities in the northern South China Sea based on AIS data: A case study of 2018. Remote Sensing, 2021, 13(10): 1952. [doi: 10.3390/rs13101952
    [11] Kroodsma DA, Mayorga J, Hochberg T, et al. Tracking the global footprint of fisheries. Science, 2018, 359(6378): 904–908. [doi: 10.1126/science.aao5646
    [12] 郑巧玲, 樊伟, 张胜茂, 等. 基于神经网络和VMS的渔船捕捞类型辨别. 南方水产科学, 2016, 12(2): 81–87. [doi: 10.3969/j.issn.2095-0780.2016.02.012
    [13] 汤先峰, 张胜茂, 樊伟, 等. 基于深度学习的刺网与拖网作业类型识别研究. 海洋渔业, 2020, 42(2): 233–244. [doi: 10.3969/j.issn.1004-2490.2020.02.011
    [14] Kim KL, Lee KM. Convolutional neural network-based gear type identification from automatic identification system trajectory data. Applied Sciences, 2020, 10(11): 4010. [doi: 10.3390/app10114010
    [15] 郑振涛, 赵卓峰, 王桂玲, 等. 面向港口停留区域识别的船舶停留轨迹提取方法. 计算机应用, 2019, 39(1): 113–117. [doi: 10.11772/j.issn.1001-9081.2018071625
    [16] Belhassena A, Wang HZ. Trajectory big data processing based on frequent activity. Tsinghua Science and Technology, 2019, 24(3): 317–332. [doi: 10.26599/TST.2018.9010087
    [17] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735
    [18] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014. 3104–3112.
    [19] Dai AM, Le QV. Semi-supervised sequence learning. Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015. 3079–3087.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐文进,董少康.基于滑动窗口和LSTM自动编码器的渔船作业类型识别.计算机系统应用,2022,31(6):287-293

复制
分享
文章指标
  • 点击次数:710
  • 下载次数: 1786
  • HTML阅读次数: 2123
  • 引用次数: 0
历史
  • 收稿日期:2021-09-16
  • 最后修改日期:2021-10-14
  • 在线发布日期: 2022-05-26
文章二维码
您是第11185318位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号