基于ESP32的乒乓球实时运动模式识别
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

安徽高校自然科学研究项目(KJ2019A0063); 安徽高校协同创新项目(GXXT-2019-008)


Real-time Table Tennis Motion Pattern Recognition Based on ESP32
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究一种基于ESP32传感器的乒乓球动作实时识别系统, 适用于乒乓球爱好者在进行乒乓球运动时的动作识别. 该系统能够采集用户运动时的三轴加速度信号并实时传输至计算机端. 在计算机端对原始加速度信号进行数据预处理, 包括滤波降噪和加窗分割, 提取预处理后加速度信号的时域特征, 利用PCA算法实现特征降维, 最后用决策树(decision tree)算法构建最优的学习模型实现对运动的分类和显示. 实验结果表明: 该系统可实时显示乒乓球4种动作的识别与计数, 识别准确率达97.32%.

    Abstract:

    This work studies a real-time motion recognition system for table tennis based on an ESP32 sensor, which is suitable for table tennis enthusiasts to recognize the motion of table tennis. When they are playing table tennis, the system can collect the triaxial acceleration signals and transmit the signals to the computer end in real time. Then, the original acceleration signal is pre-processed, including noise reduction and window segmentation, time domain characteristics of the pre-processed acceleration signal are extracted and the feature dimension is reduced by using PCA algorithm. Finally, the decision tree algorithm is employed to build the optimal learning model for the classification and display of motion. The experimental results show that the system can recognize and display the real-time recognition and count of four kinds of table tennis motion, and the recognition accuracy reaches 97.32%.

    参考文献
    相似文献
    引证文献
引用本文

张学锋,王婉琛,汤亚玲,储岳中.基于ESP32的乒乓球实时运动模式识别.计算机系统应用,2022,31(6):117-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-01
  • 最后修改日期:2021-09-26
  • 录用日期:
  • 在线发布日期: 2022-05-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号