基于KM-SVMSMOTE-CNN的信用卡欺诈检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52000045); 贵州大学人文社科青年项目(GDQN2020022)


Credit Card Fraud Detection Based on KM-SVMSMOTE-CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对信用卡欺诈检测中样本数据规模大, 计算复杂程度高, 数据分布极度不平衡等问题, 提出卷积神经网络(CNN)结合大规模信用卡交易数据进行欺诈检测, 同时为了解决交易数据的极端不平衡性问题, 使用K-means算法进行聚类, 结合支持向量机合成少数类过采样技术(SVMSMOTE)增加少数类样本数量, 最终构建一个KM-SVMSMOTE-CNN的信用卡交易欺诈预测模型. 选取Kaggle平台上发布的信用卡欺诈数据进行验证, 实验结果表明, 基于KM-SVMSMOTE-CNN的融合模型从整体上大大提高了信用卡欺诈检测的识别率.

    Abstract:

    Credit card fraud detection is exposed to problems such as large-scale sample data, high computational complexity, and extremely unbalanced data distribution. To solve those problems, this study proposes a convolutional neural network (CNN) and utilizes large-scale credit card transaction data to detect fraud. At the same time, considering the extremely unbalanced transaction data, the K-means algorithm is employed for clustering and is combined with support vector machine synthesis minority oversampling technology (SVMSMOTE) to increase the number of minority samples. Finally, a KM-SVMSMOTE-CNN-based prediction model for credit card transaction fraud is built, and the credit card fraud data released on the Kaggle platform is selected for verification. The experimental results show that the fusion model based on KM-SVMSMOTE-CNN greatly improves the overall recognition rate of credit card fraud detection.

    参考文献
    相似文献
    引证文献
引用本文

刘波,梁龙跃.基于KM-SVMSMOTE-CNN的信用卡欺诈检测.计算机系统应用,2022,31(6):361-367

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-30
  • 最后修改日期:2021-10-11
  • 录用日期:
  • 在线发布日期: 2022-05-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号