基于改进Kalman滤波的智慧社区居民定位
作者:
基金项目:

常州市科技支撑计划(社会发展)项目(CE20205045); 江苏省自然科学基金综合项目(BK20201162)


Localization of Wisdom Community Residents Based on Improved Kalman Filtering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    现如今智慧社区正在快速发展, 各种公共设施及建筑的建设使得社区内环境复杂, 影响着居民中弱势群体的安全. 故实时的居民定位便格外重要. 智慧定位作为精准化智慧服务之一, 主要通过RFID技术实现社区内老幼等人群的轨迹跟踪, 以进行安全保障. 除此之外还可分析居民聚集场所趋势, 为社区建设公共设施提出建议. 本文针对RFID阅读器传播数据时被各种噪声影响导致的定位精度差、定位结果偏差等传统问题, 引用了Kalman滤波消除信号传递过程中的过程噪声和观测噪声, 在该算法中插入改进的密度聚类算法以消除环境噪声影响, 设计了基于改进密度聚类算法的Kalman滤波轨迹定位方法(Kalman filter for improved density peak clustering, K-IDPC). 经实验验证, 相对于Kalman滤波, K-IDPC的定位精度在0.565 m左右, 准确度大幅提高.

    Abstract:

    Nowadays, smart communities are developing rapidly. The construction of various public facilities and buildings makes the community environment complex, which affects the safety of vulnerable groups of residents. Thus, the localization of residents in real time is particularly important. As one of the precise intelligent services, intelligent localization mainly realizes the trajectory tracking of the elderly and young people in a community through radio frequency identification (RFID) technology to ensure security. In addition, it can also analyze the trend of residents gathering so that it is capable of putting forward suggestions for the construction of public facilities in communities. In this study, to tackle the traditional problems such as poor localization accuracy and localization result deviation caused by various noises when an RFID reader transmits data, we use a Kalman filter to eliminate the process noise and observation noise during signal transmission and insert the improved density clustering algorithm into the traditional algorithm to eliminate the influence of environmental noise. Further, we design a Kalman filter method based on improved density peak clustering (K-IDPC) for localization. Experimental verification shows that the localization accuracy of K-IDPC is about 0.565 m, which is greatly improved compared with that of the Kalman filter.

    参考文献
    [1] 魏蒙. 中国智慧养老的定位、不足与发展对策. 理论学刊, 2021, (3): 143–149. [doi: 10.3969/j.issn.1002-3909.2021.03.016
    [2] 张博. “互联网+”视域下智慧社区养老服务模式. 当代经济管理, 2019, 41(6): 45–50
    [3] 董长春, 周良. 基于RFID及改进Chan算法的商品车定位方法. 计算机技术与发展, 2019, 29(11): 195–199. [doi: 10.3969/j.issn.1673-629X.2019.11.039
    [4] 陈龙鹏, 叶宁, 王汝传. 基于双神经网络的RFID室内定位方法. 计算机系统应用, 2019, 28(11): 218–223. [doi: 10.15888/j.cnki.csa.007155
    [5] 兰庆庆, 肖本贤. 基于网格的密度峰值聚类算法的RFID定位. 电子测量与仪器学报, 2018, 32(10): 73–78
    [6] Yi C, Da AZ, Hui C, et al. A UWB location algorithm—Based on adaptive Kalman filter. Journal of Physics: Conference Series, 2021, 1757(1): 012176. [doi: 10.1088/1742-6596/1757/1/012176
    [7] Suo YF, Liu T, Lai C, et al. A triangular centroid location method based on Kalman filter. In: Liang QL, Wang W, Liu X, et al., eds. Communications, Signal Processing, and Systems. Singapore: Springer, 2020. 448–458.
    [8] Ning X. Application and analysis of interacting multimode Kalman filter in location algorithm. Journal of Physics:Conference Series, 2020, 1617(1): 012069. [doi: 10.1088/1742-6596/1617/1/012069
    [9] El-Absi M, Zheng F, Abuelhaija A, et al. Indoor large-scale MIMO-based RSSI localization with low-complexity RFID infrastructure. Sensors, 2020, 20(14): 3933. [doi: 10.3390/s20143933
    [10] Khan UH, Rasheed H, Aslam B, et al. Localization of compact circularly polarized RFID tag using ToA technique. Radioengineering, 2017, 26(1): 147–153. [doi: 10.13164/re.2017.0147
    [11] 罗豪龙, 李广云, 欧阳文, 等. 基于自适应卡尔曼滤波的TDOA定位方法. 测绘科学技术学报, 2020, 37(3): 252–257
    [12] 詹华伟, 王良源, 陈思, 等. 基于RSSI的四边测距井下人员定位系统. 河南师范大学学报(自然科学版), 2021, 49(4): 53–59
    [13] 朱亚萍. 无线传感器网络定位算法研究[博士毕业论文]. 南京: 东南大学, 2019.
    [14] 王大刚, 丁世飞, 钟锦. 基于二阶k近邻的密度峰值聚类算法研究. 计算机科学与探索, 2021, 15(8): 1490–1500. [doi: 10.3778/j.issn.1673-9418.2102053
    [15] 黄学雨, 程世超. KNN优化的密度峰值聚类算法. 通信技术, 2021, 54(7): 1608–1618. [doi: 10.3969/j.issn.1002-0802.2021.07.010
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苑明海,周凯文,张晨希,裴凤雀.基于改进Kalman滤波的智慧社区居民定位.计算机系统应用,2022,31(6):265-270

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-02
  • 最后修改日期:2021-09-26
  • 在线发布日期: 2022-05-26
文章二维码
您是第11462648位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号