摘要:长期以来, 传统的基于单模态数据情绪分析方法存在分析角度单一、分类准确率低下等问题, 时序多模态数据的分析方法为解决这些问题提供了可能. 本文基于话语间的时序多模态数据, 对现有的多模态情绪分析方法进行了改进, 使用双向门控循环网络(Bi-GRU)结合模态内和跨模态的上下文注意力机制进行情绪分析, 最后在MOSI和MOSEI数据集上进行验证. 实验表明, 利用话语间的时序多模态数据, 并且充分融合模态内以及跨模态上下文信息的方法, 能够从多模态特征和时序特征的角度进行情绪分析, 从而有效提高情绪分析任务的分类准确率.