摘要:图像超分辨率在视频侦查领域有重要作用. 基于卷积神经网络的超分辨率算法通常在训练时输入人工合成的低分辨率图像, 学习高、低分辨率图像的映射, 很难应用于视频侦查领域. 真实低分辨率图像退化过程复杂未知, 且大都经过压缩算法的处理, 存在人工压缩痕迹, 导致超分辨率图像出现假纹理. 针对真实场景下的低分辨率图像提出一种基于离散余弦变换(DCT)和零样本学习的超分辨率算法. 该算法利用图像内部的重复相似性特点, 采用输入图像自身的子图像进行训练. 不同于以往超分辨率网络的输入, 所提算法采用子图像的离散余弦变换系数作为超分辨率网络的输入, 避免网络对输入图像的压缩痕迹进行放大, 减少假纹理. 在标准数据集和真实刑侦图像上的实验结果表明所提算法能减少图像中由压缩痕迹导致的假纹理.