摘要:叶脉分割是叶片模式分析的一个重要步骤, 对大豆的品种识别、表型研究具有十分重要的意义. 由于大豆叶脉结构十分复杂, 叶脉所在叶片区域的低对比度, 只借助灰度信息分割叶脉一般无法取得理想的分割效果. 本文提出了一种结合多尺度灰度无约束击中或击不中变换 (UHMT) 算法和基于HSI颜色空间的色调信息处理方法的大豆叶脉分割方法. 该方法将RGB颜色空间中的灰度信息和HSI颜色空间中的色调信息, 分别用于大豆叶片图像的全局叶脉分割和局部一级、二级叶脉分割. 前者采用迭代阈值分割提取叶片区域, 通过膨胀腐蚀消除叶片外轮廓以及叶柄等干扰因素, 得到叶片区域图像, 然后, 运用多尺度灰度UHMT算法得到全局叶脉图像. 后者, 针对一级和二级叶脉分割效果差的问题, 使用色调信息扩大叶脉与其他像素点灰度值差异, 以实现局部一级、二级叶脉的分割. 将获得的全局叶脉和局部叶脉图像融合, 获得最终的大豆叶脉图像. 为验证算法的有效性, 本文使用了大豆品种叶片图像数据库SoyCultivar中的大豆叶片图像进行实验. 结果表明, 该方法比现有的叶脉分割方法好, 不仅能够完整地提取大豆叶脉, 而且能够很好地消除背景以及叶片外轮廓、叶柄等无关成分.