基于双种群两阶段变异策略的差分进化算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Differential Evolution Algorithm Based on Two-stage Mutation Strategy of Two-population
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对差分进化算法差分策略优化问题上的不足, 解决DE/best/1策略全局探测能力差, DE/rand/1局部搜索能力弱而带来的鲁棒性降低及陷入局部最优等问题, 本文在差分策略上进行改进, 并且加入邻域分治思想提高进化效率, 提出一种基于双种群两阶段变异策略的差分进化算法(TPSDE). 第一个阶段利用DE/best/1的优势对邻域向量划分完成的子种群区域进行局部优化, 第二个阶段借鉴DE/rand/1的思想实现全局优化, 最终两阶段向量加权得到最终变异个体使得算法避免了过早收敛和搜索停滞等问题的出现. 6个测试函数的仿真实验结果表明TPSDE在收敛速度、优化精度和鲁棒性方面都得到了明显改善.

    Abstract:

    The differential evolution algorithm is limited in the optimization of the differential strategy, the DE/best/1 strategy has a poor global detection ability, and the weak local search ability of the DE/rand/1 strategy leads to the reduction in robustness and local optimal problems. In this study, the differential strategy is improved and the idea of neighborhood divide and conquer is added to improve the evolutionary efficiency. A differential evolution algorithm (TPSDE) based on two-stage mutation strategy with two populations is proposed. In the first stage, the advantages of the DE/best/1 strategy are employed to locally optimize the subpopulation area with completed neighborhood vector partition.In the second stage,the idea of the DE/rand/1 strategy is borrowed to achieve global optimization. Finally, the final variant individuals are obtained by weighting the vectors of the two stages, which avoids problems such as premature convergence and search stagnation. The simulation results of six test functions show that the TPSDE has significantly improved the convergence speed, optimization accuracy, and robustness.

    参考文献
    相似文献
    引证文献
引用本文

王丽颖,帅真浩.基于双种群两阶段变异策略的差分进化算法.计算机系统应用,2022,31(4):288-295

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-02
  • 最后修改日期:2021-07-30
  • 录用日期:
  • 在线发布日期: 2022-03-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号