改进RetinaNet的水泥路面露骨病害检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(51978071); 中央高校卓越青年项目(300102249301); 中央高校领军人才项目(300102249306)


Detection of Exposed Distress of Cement Pavement Based on Improved RetinaNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    露骨病害是水泥路面常见的病害之一, 会严重影响路面使用年限和行车安全性能. 因此, 及时对露骨病害进行检测与修复十分重要. 针对传统的人工检测方法检测精度不高且检测效率低的问题, 本文提出一种基于改进RetinaNet模型的水泥路面露骨病害检测方法. 首先对人工和检测车采集露骨病害图像进行滤波、去噪等预处理操作, 构建模型训练数据集; 然后将SE Net结构嵌入特征提取网络, 并改进特征金字塔网络; 最后实现改进的RetinaNet对水泥路面露骨病害的检测. 结果表明, 改进的RetinaNet模型在露骨病害检测精度上比原模型提高了4.9%, 达到98.9%. 且在相同测试数据上, 相比Faster R-CNN、SSD和YOLOv3方法, 检测效果均提升显著.

    Abstract:

    Exposed distress is one of the common diseases of cement pavements, which seriously affects pavement service life and driving safety. Therefore, it is very important to detect and repair exposed distress in time. Traditional manual detection methods are low in both detection accuracy and detection efficiency. In view of this, our study proposes a method for detecting exposed defects of cement pavements based on an improved RetinaNet model. Firstly, preprocessing operations such as filtering and denoising are carried out on the exposed distress images collected by manual and inspection vehicles, and the model training data set is constructed. Then the SE Net structure is embedded into the feature extraction network, and the feature pyramid network is improved. Finally, the detection of exposed distress of cement pavements is realized by the improved RetinaNet. The results show that the improved RetinaNet model enhances the detection accuracy of exposed distress by 4.9% compared with the original model, which reaches 98.9%. In comparison with Faster R-CNN, SSD and YOLOv3 methods, the model significantly improved the detection effect for the same test data.

    参考文献
    相似文献
    引证文献
引用本文

石丽,裴莉莉,陈昊,李伟,袁博,冯笑然.改进RetinaNet的水泥路面露骨病害检测.计算机系统应用,2022,31(4):352-359

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-05
  • 最后修改日期:2021-07-07
  • 录用日期:
  • 在线发布日期: 2022-03-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号