基于GAN和U-Net的低光照图像增强算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划 (2019YFC0507405)


Low-light Image Enhancement Algorithm Based on GAN and U-Net
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    夜间、低光照等条件下的产生的图像数据, 存在画面过暗、细节丢失的问题, 对理解图像内容、提取图像特征造成阻碍. 研究针对此类图像的增强方法, 恢复图像的亮度、对比度和细节, 在数字摄影、上游计算机视觉任务中有着重要的应用价值. 本文提出一种基于U-Net的生成对抗网络, 生成器采用带有混合注意力机制的U-Net模型, 其中混合注意力模块将非对称的Non-local的全局信息和通道注意力的通道权重信息相结合, 提高网络的特征表示能力. 判别器采用基于PatchGAN的全卷积网络模型, 对图像不同区域进行局部处理. 本文引入多损失加权融合的方法, 从多个角度引导网络学习低光照图像到正常光照图像的映射. 通过实验证明, 该方法在峰值信噪比、结构相似性等客观指标上取得较好的成绩, 同时合理的恢复了图像的亮度、对比度和细节, 直观上改善了图像的感知质量.

    Abstract:

    The image data generated at night, under low light conditions, etc., has the problems of too dark images and loss of details, which hinders the understanding of image content and the extraction of image features. The research of enhancing this type of images to restore the brightness, contrast and details is meaningful in the applications of digital photography and upstream computer vision tasks. This study proposes a U-Net-based generative adversarial network. The generator is a U-Net model with a hybrid attention mechanism. The hybrid attention module can combine the asymmetric Non-local global information and the channel weight information of channel attention to improve the feature representation ability of the network. A fully convolutional network model based on PatchGAN is taken as the discriminator to perform local processing on different regions of the images. We introduce a multi-loss weighted fusion method to guide the network to learn the mapping from low-light images to normal-light images from multiple angles. Experiments show that this method achieves better results regarding objective indicators such as peak signal-to-noise ratio and structural similarity and reasonably restores the brightness, contrast and details of the images to intuitively improve their perceived quality.

    参考文献
    相似文献
    引证文献
引用本文

李晨曦,李健.基于GAN和U-Net的低光照图像增强算法.计算机系统应用,2022,31(5):174-183

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-13
  • 最后修改日期:2021-08-04
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号