摘要:夜间、低光照等条件下的产生的图像数据, 存在画面过暗、细节丢失的问题, 对理解图像内容、提取图像特征造成阻碍. 研究针对此类图像的增强方法, 恢复图像的亮度、对比度和细节, 在数字摄影、上游计算机视觉任务中有着重要的应用价值. 本文提出一种基于U-Net的生成对抗网络, 生成器采用带有混合注意力机制的U-Net模型, 其中混合注意力模块将非对称的Non-local的全局信息和通道注意力的通道权重信息相结合, 提高网络的特征表示能力. 判别器采用基于PatchGAN的全卷积网络模型, 对图像不同区域进行局部处理. 本文引入多损失加权融合的方法, 从多个角度引导网络学习低光照图像到正常光照图像的映射. 通过实验证明, 该方法在峰值信噪比、结构相似性等客观指标上取得较好的成绩, 同时合理的恢复了图像的亮度、对比度和细节, 直观上改善了图像的感知质量.