混合鲸鱼优化算法求解柔性作业车间调度问题
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市科委软科学重点项目(20692104300); 国家自然科学基金(71840003); 上海理工大学科技发展基金(2018KJFZ043)


Hybrid Whale Algorithm for Flexible Job Shop Scheduling Problem
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种混合正余弦鲸鱼优化算法, 将其应用于柔性作业车间调度问题的研究, 以最小化最大完工时间为目标; 首先进行两段式编码, 使连续型鲸鱼优化算法可应用于柔性作业车间调度问题, 并对基本鲸鱼优化算法加入非线性收敛因子平衡搜索与开发阶段; 以正余弦算法策略改进鲸鱼个体位置更新方式与螺旋方式, 提升算法寻优能力; 最后以实验数据验证混合正余弦鲸鱼算法在求解柔性作业车间调度问题方面的有效性.

    Abstract:

    The existing parking lot classification methods are exposed to problems of low-level automation and high equipment and deployment costs, and the existing detection algorithms have low recall rates and poor detection accuracy. To solve these problems, this study proposes a vision-based parking space detection and classification algorithm to improve the utilization efficiency of parking lots. First, parking spaces are detected to help build a parking space table andincrementally expand the parking space classification model dataset. Then, the test dataset is used to train the support vector machine (SVM) model for parking space classification. Finally, real-time judgment of the parking space conditions is made on every parking space based on the surveillance video data. The experimental results show that under different lighting conditions, the recall rate of the line detection of parking spaces is above 94%, and the accuracy of the parking space classification model is above 95%. The algorithm boasts a high degree of automation, good accuracy, simple deployment, and high application value.

    参考文献
    相似文献
    引证文献
引用本文

李宝帅,叶春明.混合鲸鱼优化算法求解柔性作业车间调度问题.计算机系统应用,2022,31(4):244-252

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-22
  • 最后修改日期:2021-07-14
  • 录用日期:
  • 在线发布日期: 2022-03-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号