改进YOLOv3的火灾检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省科技计划重点项目(2017ZDCXL-GY-05-03)


Fire Detection Based on Improve YOLOv3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对火灾检测中小目标检测率低、复杂场景下检测精度低和检测不及时等问题, 提出了一种改进YOLOv3的火灾检测算法. 首先, 通过改进的K-means聚类算法重新获取更符合火焰和烟雾尺寸的anchor; 其次在Darknet-53后添加空间金字塔池化, 提升了网络的感受野进而增强了网络对小尺度目标的检测能力; 然后通过CIoU改进损失函数, 在计算坐标误差时考虑中心和宽高坐标两者的相关性, 加快了损失函数的收敛; 最后使用mosaic数据增强丰富了待检测物体的背景. 在自制的数据集上训练并测试, 实验结果表明: 改进后的算法比YOLOv3火焰的AP从94%提升至98%, 烟雾的AP从82%提升至94%, 平均检测速度从31 fps提升至43 fps, 相比Faster R-CNN、SDD等算法也有更高的mAP和更快的检测速度. 因此, 改进后的算法能够更有效地进行火灾预警.

    Abstract:

    Given the low detection rates of small targets, low detection accuracy in complex scenes, and delayed detection in fire detection, an improved You Look Only Once v3 (YOLOv3)-based fire detection algorithm is proposed. Firstly, an improved K-means clustering algorithm is used to retrieve anchors that are more in line with the sizes of the flames and smoke. Secondly, spatial pyramid pooling is added after the Darknet-53, which improves the network receptive field and enhances the detection ability of the network on small-scale targets. Thirdly, the loss function is improved through complete intersection over union (CIoU), and the convergence of the loss function is sped up by taking into consideration the correlations of the center with the width and height coordinates when calculating the coordinate error. Finally, mosaic data enhancement is employed to enrich the background of the object to be detected, and the improved algorithm is trained and tested on a self-made data set. The experimental results show that compared with the YOLOv3 algorithm, the improved algorithm improves the flame AP from 94% to 98%, increases the smoke AP from 82% to 94%, and promotes the average detection speed from 31 fps to 43 fps. Compared with the Faster R-CNN, SDD , and other algorithms, it also has a higher mAP and a faster detection speed. Therefore, the improved algorithm is more effective in fire warning.

    参考文献
    相似文献
    引证文献
引用本文

王林,赵红.改进YOLOv3的火灾检测.计算机系统应用,2022,31(4):143-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-22
  • 最后修改日期:2021-07-14
  • 录用日期:
  • 在线发布日期: 2022-03-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号