基于UKF的UWB和GPS融合定位算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fusion Positioning Algorithm of UWB and GPS Based on UKF
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能汽车的发展对高精度定位需求日益显现. 针对汽车在城市建筑群、立交桥等特殊环境下, 可见GPS卫星数量下降、车载GPS和惯性测量单元(inertial measurement unit, IMU)组合定位系统中IMU产生积累误差导致不能精确定位问题, 本文提出一种基于无迹卡尔曼滤波(unscented Kalman filter, UKF)的超宽带(ultra wide band, UWB)和GPS融合定位算法. 通过构建系统方案, 优化UWB模块数据解析算法, 构建UWB和GPS非线性融合系统模型, 分析算法复杂度, 将算法写入控制器进行实时滤波, 对不同算法下的噪声误差和方差进行数据分析. 实验表明基于无迹卡尔曼滤波的UWB和GPS融合定位算法实时性好、解算精度高、无滤波发散现象, 可满足车辆在城市特殊环境下高精度定位需求.

    Abstract:

    The demand of intelligent vehicles for high-precision positioning is increasingly strong. In complex environments of urban buildings, overpasses, and so on, the number of visible GPS satellites decreases and the inertial measurement unit (IMU) in a fusion positioning system of the vehicle GPS andthe IMU produces a time accumulation error, leading to inaccurate positioning. This paper proposes a fusion positioning algorithm of an ultra wide band (UWB) and a GPS based on the unscented Kalman filter (UKF). The system architecture scheme is constructed. The data analysis algorithm for the UWB module is optimized, and the model of a nonlinear fusion positioning system of a UWB and a GPS is built. The complexity of the algorithm is analyzed, and the algorithm is written into the controller for real-time filtering. The noise error and variance of different algorithms are analyzed. The experiments show that the fusion positioning algorithm of a UWB and a GPS based on the unscented Kalman filter, with good real-time performance, high solution accuracy, and no filter divergence, can meet the needs of high-precision positioning of vehicles in complex urban environments.

    参考文献
    相似文献
    引证文献
引用本文

应保胜,周晓帅,方海龙,吴伟伟.基于UKF的UWB和GPS融合定位算法.计算机系统应用,2022,31(3):188-196

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-24
  • 最后修改日期:2021-07-01
  • 录用日期:
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号