移动社会网络中基于全局信任模型的用户影响力计算
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(U1905211, 61771140, 61702100, 61702103); 企事业合作项目(DH-1565, DH-1412)


Global Trust Model Based Users’ Influence Calculation in Mobile Social Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有算法和模型对于网络中用户影响力计算大多只考虑拓扑结构和贪心算法而较少考虑真实社会网络中信任度对于节点影响力的重要性这一问题, 该文提出一种全局信任模型(global trust model, GTM)用于评估节点的影响力. 首先计算节点与邻居节点间的信任关系作为局部信任度, 其次利用Beta信誉模型在节点局部信任度的基础上得到全局信任度, 最后根据节点的全局信任度评估节点的影响力大小. 在真实的网络数据集上对该模型与经典影响力算法进行实验对比, 结果表明, 该文提出的方法不仅具有更低的时间复杂度, 并且在保证节点可信度与精确度的同时也具有良好的影响传播能力.

    Abstract:

    To address the problem that most existing algorithms and models for calculating user influence in networks only consider topology and greedy algorithms and rarely take into account the importance of trust degree on node influence, this paper proposed a global trust model (GTM) for evaluating node influence. The trust relationships of a node with its neighbor nodes were calculated as the local trust degrees. Then, the Beta reputation model was used to obtain the global trust degree through the local trust degrees of the node. Finally, the node influence was evaluated according to the global trust degree of the node. Experiments were conducted on real network datasets to compare this model with classical influence algorithms. The experimental results show that the proposed method not only has lower time complexity but also demonstrates a favorable influence propagation ability in addition to ensuring node trustworthiness and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

徐振宇,张欣欣,许力.移动社会网络中基于全局信任模型的用户影响力计算.计算机系统应用,2022,31(3):302-309

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-12
  • 最后修改日期:2021-06-24
  • 录用日期:
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号