基于自监督网络的DDPG算法的建筑能耗控制
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2020YFC200660);国家自然科学基金(62072324,61876217,61876121,61772357);江苏省重点研发计划(BE2017663)


Building Energy Consumption Control Based on DDPG Algorithm of Self-supervised Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对强化学习方法训练能耗控制系统时所存在奖赏稀疏的问题, 将一种基于自监督网络的深度确定策略梯度(deep deterministic policy gradient, DDPG)方法应用到建筑能耗控制问题中. 首先, 处理状态和动作变量作为自监督网络前向模型的输入, 预测下一个状态特征向量, 同时将预测误差作为好奇心设计内部奖赏, 以解决奖赏稀疏问题. 然后, 采用数据驱动的方法训练建筑能耗模型, 构建天气数据作为输入、能耗数据作为输出. 最后, 利用基于自监督网络的DDPG方法求解最优控制策略, 并以此设定空气处理装置(air handling unit, AHU)的最优排放温度, 减少设备能耗. 实验结果表明, 该方法能够在保持建筑环境舒适的基础上, 实现较好的节能效果.

    Abstract:

    In view of the sparse reward problem in the training of energy consumption control systems using reinforcement learning methods, a deep deterministic policy gradient (DDPG) method based on the self-supervised network is applied to the building energy consumption control. First, the processing state and action variables are regarded as the input of the self-supervised network forward model, predicting the feature vector of the next state and using the prediction error as the internal reward of curiosity to solve the sparse reward problem. Then, a data-driven method is used to train the building energy consumption model with weather data as input and energy consumption data as output. Finally, the DDPG method based on the self-supervised network is used to develop the optimal control strategy, and the optimal discharge temperature of the air handling unit (AHU) is set based on the strategy to reduce the energy consumption of the equipment. Experimental results show that this method can achieve good energy-saving effects on the basis of maintaining a comfortable building environment.

    参考文献
    相似文献
    引证文献
引用本文

殷雨竹,陈建平,傅启明,陆悠,吴宏杰.基于自监督网络的DDPG算法的建筑能耗控制.计算机系统应用,2022,31(2):161-167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-08
  • 最后修改日期:2021-05-11
  • 录用日期:
  • 在线发布日期: 2022-01-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号