基于YOLOv3的油茶果视觉定位系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江西省自然科学基金(AA201920039)


Visual Positioning System for Camellia Oleifera Fruit Based on YOLOv3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着科技的进步,采摘机器人各个部分的系统也日益完善.其中,机器人视觉定位的系统设计很大程度影响了其工作效率,尤其是在目标检测速率、采摘果实准确率以及采摘目标环境适应度方面.本次研究提出利用双目立体视觉系统获取油茶果目标图像,并采集计算深度信息,制作自己的油茶果VOC数据集,采用YOLOv3目标检测算法来实现复杂环境下油茶果果实的识别,并通过设计上位机界面,直观展示对油茶果目标的定位功能.实验发现该方法具有更高的识别率和更快的识别速度,在复杂环境下展示了其算法的优越性.

    Abstract:

    With the advancement of technology, the systems of various parts of the picking robots have been increasingly improved. The design of the visual positioning system largely affects the work efficiency of a picking robot, especially its target detection speed, fruit picking accuracy, and target picking environment adaptation. In this study, we propose to use a binocular stereo vision system to acquire images of camellia oleifera fruit targets and then collect and calculate depth information to build our own VOC dataset of Camellia oleifera fruits. The you only look once v3 (YOLOv3) target detection algorithm is adopted to achieve Camellia oleifera fruit recognition in complex environments. The function of locating Camellia oleifera fruit targets is intuitively demonstrated by a newly designed upper computer interface. Experimental results show that compared with other methods, the proposed method has a higher recognition rate and a faster recognition speed, which demonstrates the superiority of its algorithm in complex environments.

    参考文献
    相似文献
    引证文献
引用本文

熊仕琦,王长坤,熊璐康.基于YOLOv3的油茶果视觉定位系统.计算机系统应用,2022,31(1):132-137

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-02
  • 最后修改日期:2021-04-29
  • 录用日期:
  • 在线发布日期: 2021-12-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号