基于相机标定的弯道位置信息构建
作者:
基金项目:

国家自然科学基金(6207072223,6200022622)


Curve Position Information Construction Based on Monitoring Camera Calibration
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    弯道是道路交通场景下的重要组成部分之一,在通过视觉信息对道路信息重建的过程中,监控相机构建的传统世界坐标系在弯道场景下难以表示真实的道路空间信息以及车辆位置信息.为了解决此问题,本文提出了基于道路线形的里程坐标系概念.里程坐标系水平方向代表沿道路断面方向的距离信息,垂直方向代表沿道路线形方向的里程信息.对于里程坐标系的构建,首先通过单消失点标定算法和道路先验信息进行相机标定及提出的结果优化方式,获得车道线或道路边缘的真实空间位置.其次,基于世界坐标系下的车道线或道路边缘的真实空间信息进行多项式拟合,得到描述弯道道路线形的拟合曲线.最后将道路标识点或车辆轨迹点向拟合曲线进行投影,获得基于道路断面方向距离信息和沿道路方向距离信息.此方案在弯道模拟实验场景下和实际高速公路弯道场景下进行了实验,结果表明所提出的里程坐标系在实验场景和实际场景的位置平均误差小于5%,具有较好的适应性和较高的精度,相比于传统直线世界坐标系,里程坐标系能够满足实际需求.

    Abstract:

    Curves are an important component of road traffic scenes. In road information reconstruction through visual information, it is difficult for the traditional world coordinate system built by the surveillance camera to represent the real road spatial information and vehicle position information in a curve scene. To solve this problem, this study proposes a mileage coordinate system based on road alignment. In this system, the horizontal direction represents distance information along the road section, and the vertical direction represents mileage information along the road alignment. For the construction of the mileage coordinate system, camera calibration and proposed result optimization are firstly carried out through the calibration algorithm based on a single vanishing point and the road prior information to obtain the real spatial positions of the lane lines or road edges. Then, with the real spatial information of lane lines or road edges in the world coordinate system, polynomial fitting is performed to obtain the fitted road alignment curve. Finally, the road identification points or vehicle track points are projected onto the fitted curve to acquire the distance information based on the road section direction and the distance information in the road direction. This scheme is tested in a simulated experimental curve scene and an actual highway curve scene. The experimental results show that the average position errors of the proposed mileage coordinate system are both less than 5% in the simulated curve scene and the actual scene. Compared with the traditional straight-line world coordinate system, this system, with favorable adaptability and high precision, can meet actual requirements.

    参考文献
    [1] Wan YW, Huang Y, Buckles B. Camera calibration and vehicle tracking: Highway traffic video analytics. Transportation Research Part C: Emerging Technologies, 2014, 44: 202–213. [doi: 10.1016/j.trc.2014.02.018
    [2] 赖见辉, 王扬, 罗甜甜, 等. 基于YOLO_V3的侧视视频交通流量统计方法与验证. 公路交通科技, 2021, 38(1): 135–142. [doi: 10.3969/j.issn.1002-0268.2021.01.017
    [3] 王伟, 唐心瑶, 宋焕生, 等. 单目视觉下基于三维目标检测的车型识别方法综述. 小型微型计算机系统, 2020, 41(6): 1274–1280. [doi: 10.3969/j.issn.1000-1220.2020.06.027
    [4] Zhang DM, Fang B, Yang WB, et al. Robust inverse perspective mapping based on vanishing point. Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). Wuhan: IEEE, 2014. 458–463.
    [5] 许燕霞, 杨鸣. 基于地面参考系的视频测速方法. 激光杂志, 2017, 38(11): 97–101
    [6] 巨志勇, 王超男, 何晓蕾. 视频图像的车辆速度实时检测算法研究. 计算机应用研究, 2017, 34(9): 2822–2824, 2853. [doi: 10.3969/j.issn.1001-3695.2017.09.057
    [7] 武非凡, 宋焕生, 戴喆, 等. 交通监控场景下的相机标定与车辆速度测量. 计算机应用研究, 2020, 37(8): 2417–2421
    [8] Kanhere NK, Birchfield ST. A taxonomy and analysis of camera calibration methods for traffic monitoring applications. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 441–452. [doi: 10.1109/TITS.2010.2045500
    [9] Dubská M, Herout A. Real projective plane mapping for detection of orthogonal vanishing points. Proceedings of the 24th British Machine Vision Conference. London: BMVA Press, 2013. 1–10.
    [10] López-Martinez A, Cuevas FJ. Vanishing point detection using the teaching learning-based optimisation algorithm. IET Image Processing, 2020, 14(11): 2487–2494. [doi: 10.1049/iet-ipr.2019.0516
    [11] Shi JJ, Wang JX, Fu FF. Fast and robust vanishing point detection for unstructured road following. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 970–979. [doi: 10.1109/TITS.2015.2490556
    [12] 宋洪军, 陈阳舟, 郜园园. 非结构化道路中基于均质雾天的摄像机动态标定算法. 计算机辅助设计与图形学学报, 2013, 25(7): 1060–1073. [doi: 10.3969/j.issn.1003-9775.2013.07.017
    [13] Sochor J, Juránek R, Herout A. Traffic surveillance camera calibration by 3D model bounding box alignment for accurate vehicle speed measurement. Computer Vision and Image Understanding, 2017, 161: 87–98. [doi: 10.1016/j.cviu.2017.05.015
    [14] Song HS, Li C, Wu FF, et al. 3D vehicle model-based PTZ camera auto-calibration for smart global village. Sustainable Cities and Society, 2019, 46: 101401. [doi: 10.1016/j.scs.2018.12.029
    [15] Zheng Y, Peng SL. A practical roadside camera calibration method based on least squares optimization. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 831–843. [doi: 10.1109/TITS.2013.2288353
    [16] Bhardwaj R, Tummala GK, Ramalingam G, et al. AutoCalib: Automatic traffic camera calibration at scale. ACM Transactions on Sensor Networks, 2018, 14(3–4): 1–27
    [17] 武非凡, 梁浩翔, 宋焕生, 等. 基于相机标定的跨相机场景拼接方法. 计算机系统应用, 2020, 29(1): 176–183. [doi: 10.15888/j.cnki.csa.007210
    [18] 中华人民共和国交通运输部. JTG D82-2009 公路交通标志和标线设置规范. 北京: 人民交通出版社, 2009.
    [19] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv: 2004.10934, 2020.
    [20] Henriques JF, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596. [doi: 10.1109/TPAMI.2014.2345390
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

穆勃辰,宋焕生,李聪亮,张文涛.基于相机标定的弯道位置信息构建.计算机系统应用,2022,31(1):55-64

复制
分享
文章指标
  • 点击次数:741
  • 下载次数: 1449
  • HTML阅读次数: 1165
  • 引用次数: 0
历史
  • 收稿日期:2021-03-24
  • 最后修改日期:2021-04-21
  • 在线发布日期: 2021-12-17
文章二维码
您是第11184643位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号