基于双向特征金字塔和残差网络的危化品运输车辆检测
作者:
基金项目:

国家山区公路工程技术研究中心开放基金(GSGZJ-2020-08);广西重点研发计划(桂科AB20159032)


Dangerous Chemical Transport Vehicle Detection Using Bidirectional Feature Pyramid and ResNet
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    危化品运输车辆的主要特征是车顶的危险标志和车牌下的危险品标志,这对于大多数目标检测算法来说检测起来比较困难.为了在提高检测精度的同时加快检测速度,本文提出了一种融合残差网络和双向特征金字塔网络的危化品车辆检测算法.首先通过对高速公路监控视频进行截取,制作危化品车辆数据集,然后通过残差网络进行特征提取,在本文中,使用循环残差模块替换残差块的中间卷积层.接下来通过双向特征金字塔网络进行特征融合,最后通过预测网络得到预测结果.在测试集上进行性能验证,结果显示本文模型的各项指标整体上均要优于其他网络,其中检测精度达到0.961,每秒可以检测43.5张图片,整体性能表现优异,达到了检测精度和速度的均衡.

    Abstract:

    The major characteristics of vehicles for hazardous chemicals transportation are the danger sign on the roof and the dangerous goods sign beside the license plate, which are difficult to detect for most object detection algorithms. To improve the detection accuracy and enhance the detection speed, this study proposes a novel detection algorithm for these vehicles based on the residual network (ResNet) and bidirectional feature pyramid network. A data set of vehicles for hazardous chemicals transportation is first made by the interception of the highway surveillance video, and then feature extraction is performed with the ResNet. In this novel model, the recurrent residual module is used to replace the middle convolution layer of the residual block. Then the bidirectional feature pyramid network is employed for feature fusion. Finally, the prediction results are obtained with the prediction network. Performance verification is carried out on the test set, and the results show that the indicators of the proposed model are superior to those of other networks overall. It has the detection accuracy up to 0.961 and the frames per second (FPS) of 43.5, showing a good industrial application prospect.

    参考文献
    [1] 杨恩泽. 基于深度学习的交通车辆检测与识别算法研究[硕士学位论文]. 北京: 北京交通大学, 2019.
    [2] 虞明远, 李世武, 解晓玲, 等. 道路危险货物运输监管过程分析及对策研究. 公路交通科技, 2010, 27(8): 155–158. [doi: 10.3969/j.issn.1002-0268.2010.08.029
    [3] 刘勇, 施式亮, 李润求, 等. 危险化学品公路隧道运输风险评价模型及应用. 湖南科技大学学报(自然科学版), 2018, 33(4): 20–25. [doi: 10.13582/j.cnki.1672-9102.2018.04.004
    [4] 舒强. 危险货物运输车辆外观标志标识特征和功能介绍. 道路交通管理, 2017, (5): 52–53
    [5] Watkins R, Pears N, Manandhar S. Vehicle classification using ResNets, localisation and spatially-weighted pooling. arXiv: 1810.10329, 2018.
    [6] 费东炜, 孙涵. 基于深度哈希网络的车型识别方法. 计算机技术与发展, 2020, 30(1): 7–12. [doi: 10.3969/j.issn.1673-629X.2020.01.002
    [7] Cao ZJ, Long MS, Wang JM, et al. HashNet: Deep learning to hash by continuation. 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017. 5609–5618.
    [8] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84–90. [doi: 10.1145/3065386
    [9] 史凯静, 鲍泓, 徐冰心, 等. 基于Faster RCNN的智能车道路前方车辆检测方法. 计算机工程, 2018, 44(7): 36–41. [doi: 10.19678/j.issn.1000-3428.0050993
    [10] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. [doi: 10.1109/tpami.2016.2577031
    [11] 张富凯, 杨峰, 李策. 基于改进YOLOv3的快速车辆检测方法. 计算机工程与应用, 2019, 55(2): 12–20. [doi: 10.3778/j.issn.1002-8331.1810-0333
    [12] 郑冬, 李向群, 许新征. 基于轻量化SSD的车辆及行人检测网络. 南京师大学报(自然科学版), 2019, 42(1): 73–81
    [13] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
    [14] Sandler M, Howard A, Zhu ML, et al. MobileNetV2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 4510–4520.
    [15] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
    [16] 毛其超, 贾瑞生, 左羚群, 等. 基于深度学习的交通监控视频车辆检测算法. 计算机应用与软件, 2020, 37(9): 111–117, 164. [doi: 10.3969/j.issn.1000-386x.2020.09.019
    [17] 赵明艳. 基于深度学习的危化品车辆识别[硕士学位论文]. 兰州: 兰州财经大学, 2019.
    [18] 甘志梅, 王春香, 杨明. 基于激光雷达的车辆跟踪与识别方法. 上海交通大学学报, 2009, 43(6): 923–926. [doi: 10.3321/j.issn:1006-2467.2009.06.016
    [19] Tan MX, Pang RM, Le QV. Efficientdet: Scalable and efficient object detection. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 10778–10787.
    [20] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [21] Lin TY, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 936–944.
    [22] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015. 234–241.
    [23] Alom MZ, Hasan M, Yakopcic C, et al. Recurrent residual convolutional neural network based on U-Net (R2u-Net) for medical image segmentation. arXiv: 1802.06955, 2018.
    [24] Shu C, Ding XQ, Fang C. Histogram of the oriented gradient for face recognition. Tsinghua Science and Technology, 2011, 16(2): 216–224. [doi: 10.1016/s1007-0214(11)70032-3
    [25] Noble WS. What is a support vector machine? Nature Biotechnology, 2006, 24(12): 1565–1567. [doi: 10.1038/nbt1206-1565
    [26] Dai JF, Li Y, He KM, et al. R-FCN: Object detection via region-based fully convolutional networks. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM, 2016. 379–387.
    [27] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv: 1804.02767, 2018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢耀华,代玉,周欣,李刚.基于双向特征金字塔和残差网络的危化品运输车辆检测.计算机系统应用,2022,31(1):218-225

复制
分享
文章指标
  • 点击次数:928
  • 下载次数: 1547
  • HTML阅读次数: 1930
  • 引用次数: 0
历史
  • 收稿日期:2021-03-21
  • 最后修改日期:2021-04-19
  • 在线发布日期: 2021-12-17
文章二维码
您是第11292126位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号