摘要:短文本匹配是自然语言处理领域中的一个核心问题, 可应用于信息检索、问答系统、复述问题等任务. 过去的工作大多在提取文本特征时只考虑文本内部信息, 忽略了两个文本之间的交互信息, 或者仅进行单层次交互. 针对以上问题, 提出一种基于Transformer改进的短文本匹配模型ISTM. ISTM模型以DSSM为基本架构, 利用BERT模型对文本进行向量化表示, 解决Word2Vec一词多义的问题, 使用Transformer编码器对文本进行特征提取, 获取文本内部信息, 并考虑两个文本之间的多层次交互信息, 最后由拼接向量推理计算出两个文本之间的语义匹配度. 实验表明, 相比经典深度短文本匹配模型, 本文提出的ISTM模型在LCQMC中文数据集上表现出了更好的效果.