基于SuperPoint的轻量级特征点及描述子提取网络
作者:
基金项目:

安徽省2019年重点研究与开发计划(201904a05020035)


Lightweight Feature Point and Descriptor Extraction Network Based on SuperPoint
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    图像特征点及描述子提取是SLAM、SFM和3D重建等任务的基础, 较好的图像特征点及描述子提取算法会对这些任务的进步产生十分重要的作用. 本文聚焦于提取特征点和描述子算法中鲁棒性较高、性能较好的SuperPoint网络, 对该网络进行了一定程度的改进. 针对其计算量和参数较大的问题, 首先将普通卷积改成深度可分离卷积, 改变卷积层数和下采样方式, 之后改进通道剪枝算法, 使其可以应用于深度可分离卷积, 对网络进行剪枝. 实验结果显示, 在轻微损失特征点检测和匹配效果的情况下, 将网络参数量压缩为原来网络的15%, 运算量压缩为原来网络的5%, FPS提升6.64倍, 取得了较好的实验效果.

    Abstract:

    The extraction of image feature points and descriptors is the foundation of some tasks such as SLAM, SFM, and 3D reconstruction. Preeminent algorithms for image feature point and descriptor extraction play a significant role in processing these tasks. This study accomplishes some improvements in the SuperPoint network with high robustness and good performance in the extraction of feature points and descriptors. Considering the flaws of the heavy calculation burden and massive parameters, the authors first change the ordinary convolution to depthwise separable convolution, the number of layers, and the down-sampling method. Afterward, the channel pruning algorithm is perfected so that it can be applied to depthwise separable convolution and prune the network. Experiments have proved that this study reduces the network parameter number and calculation burden respectively to 15% and 5% those of the original SuperPoint network, and the FPS is increased by 6.64 times under the condition of a slight loss of feature point detection and matching effects. Thus, good experimental results are achieved.

    参考文献
    [1] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110. [doi: 10.1023/B:VISI.0000029664.99615.94
    [2] Snavely N, Seitz SM, Szeliski R. Photo tourism: Exploring photo collections in 3D. ACM Transactions on Graphics, 2006, 25(3): 835–846. [doi: 10.1145/1141911.1141964
    [3] Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31(5): 1147–1163. [doi: 10.1109/TRO.2015.2463671
    [4] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436–444. [doi: 10.1038/nature14539
    [5] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84–90. [doi: 10.1145/3065386
    [6] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [7] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    [8] Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up robust features. European Conference on Computer Vision. Graz: Springer, 2006. 404–417.
    [9] Tian YR, Fan B, Wu FC. L2-Net: Deep learning of discriminative patch descriptor in Euclidean space. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 6128–6136.
    [10] Mishchuk A, Mishkin D, Radenovic F, et al. Working hard to know your neighbor’s margins: Local descriptor learning loss. Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017. 4826–4837.
    [11] Laguna A B, Riba E, Ponsa D, et al. Key.Net: Keypoint detection by handcrafted and learned CNN filters. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 5836–5844.
    [12] DeTone D, Malisiewicz T, Rabinovich A. Superpoint: Self-supervised interest point detection and description. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018. 224–236.
    [13] Ono Y, Trulls E, Fua P, et al. LF-Net: Learning local features from images. Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018. 6234–6244.
    [14] Dusmanu M, Rocco I, Pajdla T, et al. D2-net: A trainable CNN for joint description and detection of local features. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 8092–8101.
    [15] Howard AG, Zhu ML, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017.
    [16] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
    [17] Liu Z, Li JG, Shen ZQ, et al. Learning efficient convolutional networks through network slimming. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 2736–2744.
    [18] Balntas V, Lenc K, Vedaldi A, et al. HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 3852–3861.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李志强,朱明.基于SuperPoint的轻量级特征点及描述子提取网络.计算机系统应用,2021,30(11):310-316

复制
分享
文章指标
  • 点击次数:1321
  • 下载次数: 3142
  • HTML阅读次数: 4275
  • 引用次数: 0
历史
  • 收稿日期:2021-01-30
  • 最后修改日期:2021-02-26
  • 在线发布日期: 2021-10-22
文章二维码
您是第11250571位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号