基于尺度融合的密集人群计数
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62072469); 国家重点研发计划(2018YFE0116700); 山东省自然科学基金(ZR2019MF049); 中央高校基本科研业务费专项资金(2015020031); 西海岸人工智能技术创新中心建设专项(2019-1-5, 2019-1-6); 上海可信工业控制平台开放项目(TICPSH202003015-ZC)


Crowd Counting Based on Scale Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现实场景中人群尺度的巨大差异给密集人群计数算法带来了巨大的挑战, 因此提出一种基于尺度融合的密集人群计数算法. 首先对密度图构建算法进行优化, 利用多个头部检测器获取稀疏人群的部分头部尺度, 并用径向基差值进行补全, 在人群密集区域辅之以距离自适应的人群密度图生成算法, 生成更为精确的人群密度图. 其次利用移动翻转瓶颈卷积模块设计尺度融合的人群密度图回归神经网络, 并加入膨胀卷积模块进一步提升人体头部边缘特征提取能力. 最后, 通过将人群区域和非人群区域进行区分对人群密度图回归神经网络损失函数进行优化. 在实验部分, 将该算法在多个数据集上与多个同类算法进行了充分的对比实验与消融实验, 实验结果表明提出的方法能够显著提升密集人群计数算法的准确性.

    Abstract:

    The diversity of crowd scale in reality is a great challenge to crowd counting algorithms. Therefore, a novel crowd counting algorithm based on scale fusion is proposed in this study. Firstly, the algorithm for density map generation is optimized. Multiple head detectors are used to obtain part of the head scales of the sparse crowd, and RBF interpolation is employed to complete this part of the density map. As to the dense part of crowd, the traditional distance self-adaptive algorithm is adopted to generate a more accurate density map. Secondly, the regression neural network of the density map is designed with a mobile inverted bottleneck convolution module, and a dilated convolution module is added to facilitate the extraction of head edge features. Finally, the loss function of the regression neural network is optimized by distinguishing the crowd area from the non-crowd area. In the experiment part, the algorithm is compared with other similar algorithms on multiple datasets, and the results show that the proposed method can significantly improve the accuracy of crowd counting.

    参考文献
    相似文献
    引证文献
引用本文

赵宏伟,徐亮,王冶,安云云,钱华山.基于尺度融合的密集人群计数.计算机系统应用,2021,30(10):1-11

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-11
  • 最后修改日期:2021-02-07
  • 录用日期:
  • 在线发布日期: 2021-10-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号