摘要:针对标准编码解码模型(Encoder-Decoder Model, EDM)对于时间序列数据提取能力弱的问题, 提出一种融合双向长短时记忆网络(Bi-directional Long Short-Term Memory, Bi-LSTM)和注意力机制(Attention)的编码解码模型. 通过Bi-LSTM对输入数据从正反两个方向进行特征提取, 基于注意力机制将所得到的特征根据不同时刻分配不同权重, 根据解码阶段的不同时刻生成相应背景变量, 进而实现对机场客流量的预测. 选取上海虹桥机场为例用该算法进行实验仿真, 实验结果表明, 本文所提方法与RNN、LSTM相比, 平均标准误差降低了57.9%以上, 为机场客流量预测提供了一种新的思路.