基于卷积神经网络的指针式仪表识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Recognition of Pointer Instrument Based on Convolution Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前大部分研究指针式仪表识别的方法中提取指针是完全基于传统的图像处理技术, 提取过程较为复杂且步骤繁多. 为了有效解决指针式仪表读数识别中指针中轴线所在直线提取困难及识别精度不高等问题, 本文提出了一种基于深度学习的指针式仪表的识别方法. 首先用Faster R-CNN算法检测仪表圆盘, 再采用基于深度学习的方法Faster R-CNN算法检测指针, 根据得到的指针目标框的位置信息裁剪得到指针图像, 在指针图像的基础上进行二值化、细化、霍夫变换检测直线、最小二乘法拟合直线等步骤识别仪表最终读数. 和直接在仪表表盘目标框图像或原始图像上进行传统图像处理相比很大程度上减少了定位指针中轴线所在直线过程中的干扰. 实验结果表明本文所提出的基于深度学习的指针检测的平均准确率高达96.55%. 对于复杂背景下指针式仪表的指针区域的检测具有良好的准确性与稳定性.

    Abstract:

    At present, most of the pointer recognition methods are based on the traditional image processing technology, and the extraction process is complicated with many steps. To effectively solve the problems of difficult pointer axis extraction and poor reading recognition accuracy of a pointer instrument, this study introduces a method of pointer instrument recognition based on deep learning. First, the Faster R-CNN algorithm is used to detect the instrument disk, and then the method based on deep learning is adopted to detect the pointer. According to the position information of the target frame, the pointer image is obtained by clipping. The final reading of the instrument is identified by binarization, thinning, Hough transform, and the least square fitting line. Compared with the traditional image processing directly on the image of the panel target frame or the original image, this method greatly reduces the interference in the process of locating the line where the pointer axis is located. The experimental results show that the average accuracy of pointer detection based on deep learning proposed in this study is up to 96.55%. It has high accuracy and stability for pointer detection of the pointer instrument under a complex background.

    参考文献
    相似文献
    引证文献
引用本文

李金红,熊继平,陈泽辉,朱凌云.基于卷积神经网络的指针式仪表识别.计算机系统应用,2021,30(9):85-91

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-03
  • 最后修改日期:2021-01-14
  • 录用日期:
  • 在线发布日期: 2021-09-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号