摘要:自全卷积网络(Fully Convolutional Network, FCN)提出以后, 应用深度学习技术在图像语义分割领域受到了许多计算机视觉和机器学习研究者的关注, 现在这一方向已经成为人工智能方向的研究热点. FCN的核心思想是搭建一个全卷积网络, 输入任意尺寸的图像, 经过模型的有效学习和推理得到相同尺寸的输出. FCN的提出给图像语义分割领域提供了新的思路, 但也存在很多的缺点, 比如特征分辨率低、对象存在多尺度问题等. 随着研究者不断的钻研, 卷积神经网络在图像分割领域逐渐得到了优化和拓展, 基于FCN的主流分割框架也层出不穷. 图像语义分割对于场景理解的重要性日渐突出, 被广泛应用到无人驾驶技术、无人机领域和医疗影像检测与分析等任务中. 因此, 对图像语义分割领域的研究将值得深入研究, 使其能够更好在实际应用中大放异彩.