基于区块链的工业物联网联邦学习系统架构
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62072469)


Federated Learning System Architecture in Industrail IoT Based on Blockchain
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    联邦学习是一种新兴的保护隐私的机器学习算法, 它正在广泛应用于工业物联网(IIoT)中, 在联邦学习中中心服务器协调多个客户端(如物联网设备)在本地训练模型, 最后融合成一个全局模型. 最近, 区块链在工业物联网和联邦学习中得到了利用, 以用来维护数据完整性和实现激励机制, 吸引足够的客户数据和计算资源用于培训. 然而, 基于区块链的联邦学习系统缺乏系统的架构设计来支持系统化开发. 此外, 目前的解决方案没有考虑激励机制设计和区块链的可扩展性问题. 因此, 在本文中, 我们提出了一个应用于工业物联网中基于区块链的联邦学习系统架构, 在此架构中, 每个客户端托管一个用于本地模型训练的服务器, 并管理一个完整的区块链节点. 为了实现客户端数据的可验证完整性, 同时考虑到区块链的可扩展问题, 因此每个客户端服务器会定期创建一个默克尔树, 其中每个叶节点表示一个客户端数据记录, 然后将树的根节点存储在区块链上. 为了鼓励客户积极参与联邦学习, 基于本地模型培训中使用的客户数据集大小, 设计了一种链上激励机制, 准确、及时地计算出每个客户的贡献. 在实验中实现了提出的架构的原型, 并对其可行性、准确性和性能进行了评估. 结果表明, 该方法维护了数据的完整性, 并具有良好的预测精度和性能.

    Abstract:

    Federated learning is an emerging privacy-preserving machine learning paradigm widely applied to the Industrial Internet of Things (IIoT), where multiple clients (e.g. IoT devices) train models locally to formulate a global model under the coordination of a central server. Blockchain has been recently leveraged in IIoT federated learning to maintain data integrity and provide incentives to attract sufficient client data and computation resources for training. However, there is a lack of systematic architecture design for blockchain-based federated learning systems to support methodical development in IIoT. Also, the current solutions do not consider the incentive mechanism design and blockchain scalability. Therefore, in this study, we present a platform architecture of blockchain-based federated learning systems in IIoT, where each client hosts a server for local model training and manages a full blockchain node. For verifiable integrity of client data in a scalable way, each client server periodically creates a Merkle tree in which each leaf node represents a client data record and stores the tree root on a blockchain. To encourage clients to participate in federated learning, an on-chain incentive mechanism is designed based on the size of client data used in local model training to accurately and timely calculate each client’s contribution. A prototype of the proposed architecture is implemented with our industry partner and evaluated in terms of feasibility, accuracy and performance. The results show that the approach ensures data integrity and has satisfactory prediction accuracy, and performance.

    参考文献
    相似文献
    引证文献
引用本文

于秋雨,卢清华,张卫山.基于区块链的工业物联网联邦学习系统架构.计算机系统应用,2021,30(9):69-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-06
  • 最后修改日期:2021-01-08
  • 录用日期:
  • 在线发布日期: 2021-09-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号