基于模糊强化学习和果蝇优化的WSN数据聚合算法
作者:

WSN Data Aggregation Algorithm Based on Fuzzy Reinforcement Learning and Fruit Fly Optimization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在无线传感器网络中, 传感器的能量时有限的, 如果传感器的能量耗尽, 那么无线传感网络的鲁棒性和寿命就会大大降低. 因此, 提出了基于模糊强化学习和果蝇优化的数据聚合机制, 以最大限度地延长网络寿命, 并进行高效数据聚合. 首先, 网格聚类用于簇的形成和簇头的选择, 接着评估各个网格簇所有可能的数据聚合节点, 然后采用模糊强化学习选取最佳数据聚合节点, 最后利用果蝇优化算法动态定位整个无线传感网络的数据汇聚节点. 仿真结果表明, 提出的数据聚合方案在能耗和网络鲁棒性方面优于对比方案.

    Abstract:

    In a wireless sensor network, the sensor has limited energy. If it runs out of energy, the robustness and lifespan of the network will be greatly reduced. Therefore, a data aggregation mechanism based on fuzzy reinforcement learning and fruit fly optimization is proposed to maximize the lifespan of the network and perform efficient data aggregation. First, grid clustering is applied to cluster formation and cluster head selection. Then, all possible data aggregation nodes of each grid cluster are evaluated, in which the best one is selected by fuzzy reinforcement learning. Finally, the fruit fly optimization algorithm is adopted to dynamically position the data aggregation nodes of the entire wireless sensor network. The simulation results show that the proposed scheme is better than the comparison scheme in terms of energy consumption and network robustness.

    参考文献
    [1] 王汝言, 李宏娟, 吴大鹏. 基于Stackelberg博弈的虚拟化无线传感网络资源分配策略. 电子与信息学报, 2019, 41(2):377-384
    [2] 于国庆, 苑宗昊. 无线传感网络数据转发最佳权重选取算法仿真. 计算机仿真, 2020, 37(1):276-279.[doi:10.3969/j.issn.1006-9348.2020.01.056
    [3] Pandey OJ, Hegde RM. Low-latency and energy-balanced data transmission over cognitive small world WSN. IEEE Transactions on Vehicular Technology, 2018, 67(8):7719-7733.[doi:10.1109/TVT.2018.2839562
    [4] 吴意乐, 何庆, 徐同伟. 改进自适应粒子群算法在WSN覆盖优化中的应用. 传感技术学报, 2016, 29(4):559-565.[doi:10.3969/j.issn.1004-1699.2016.04.016
    [5] Xu X, Ansari R, Khokhar A, et al. Hierarchical Data Aggregation using Compressive Sensing (HDACS) in WSNs. ACM Transactions on Sensor Networks, 2015, 11(3):45
    [6] Sert SA, Alchihabi A, Yazici A. A two-tier distributed fuzzy logic based protocol for efficient data aggregation in multihop wireless sensor networks. IEEE Transactions on Fuzzy Systems, 2018, 26(6):3615-3629.[doi:10.1109/TFUZZ.2018.2841369
    [7] Akila IS, Venkatesan R. A fuzzy based energy-aware clustering architecture for cooperative communication in WSN. The Computer Journal, 2016, 59(10):1551-1562.[doi:10.1093/comjnl/bxw062
    [8] Xu XH, Li XY, Mao XF, et al. A delay-efficient algorithm for data aggregation in multihop wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(1):163-175.[doi:10.1109/TPDS.2010.80
    [9] Maraiya K, Kant K, Gupta N. Wireless sensor network:A review on data aggregation. International Journal of Scientific & Engineering Research, 2011, 2(4):1-6
    [10] Al-Karaki JN, Ul-Mustafa R, Kamal AE. Data aggregation and routing in wireless sensor networks:Optimal and heuristic algorithms. Computer Networks, 2009, 53(7):945-960.[doi:10.1016/j.comnet.2008.12.001
    [11] Jesus P, Baquero C, Almeida PS. A survey of distributed data aggregation algorithms. IEEE Communications Surveys & Tutorials, 2015, 17(1):381-404
    [12] Jawad MA, Mir F. Network lifetime enhancement in wireless sensor networks using secure alternate path. Proceedings of 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). Chennai, India. 2017. 414-419.
    [13] Liu ZX, Zheng QC, Xue L, et al. A distributed energy-efficient clustering algorithm with improved coverage in wireless sensor networks. Future Generation Computer Systems, 2012, 28(5):780-790.[doi:10.1016/j.future.2011.04.019
    [14] Zhu C, WU S, Han GJ, et al. A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 2015, 3:381-396.[doi:10.1109/ACCESS.2015.2424452
    [15] Renjith PN, Baburaj E. An analysis on data aggregation in Wireless Sensor Networks. Proceedings of 2012 International Conference on Radar, Communication and Computing (ICRCC). Tiruvannamalai, India. 2012. 62-71.
    相似文献
    引证文献
引用本文

阎峻,黄建德,孙鹏玉,蒋池剑,陆靓.基于模糊强化学习和果蝇优化的WSN数据聚合算法.计算机系统应用,2021,30(8):219-224

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-14
  • 最后修改日期:2020-12-21
  • 在线发布日期: 2021-08-03
文章二维码
您是第11336308位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号