基于5G与CNN的智能电网稳定性预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省2019年度第二批省级工业和信息产业转型升级专项资金(5246DR180077)


Stability Prediction of Smart Grid Based on 5G and CNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着5G通信技术的研究以及新型基础设施的建设, 智能电网得到了快速发展. 同时, 在大数据时代, 万物互联导致海量的设备接入电力网络, 也给智能电网带来了较大的负担, 电力网络的稳定性问题亟待解决. 因此, 本文提出了一种基于CNN的智能电网稳定性预测算法, 通过收集电力网络产生的数据, 经过CNN模型的处理, 最后输出智能电网稳定性的判别结果. 经过仿真验证, 该算法与SVM、AdaBoost, 随机森林相比, 具有较高的准确率; 同时, 本文采用了4种不同的优化算法去改善CNN模型, 带有动量的SGD算法可以达到98.13%预测准确度, 利用该模型可以有效帮助电力系统对未知的问题提前预警, 降低了安全隐患并减少了电力事故的发生.

    Abstract:

    The research on 5G communication technology and the construction of new infrastructure has witnessed the rapid development of the smart grid. In the era of big data, the Internet of everything leads to the access of massive equipment to the power network, which also brings a great burden to the smart grid, and the stability problem of the power network is urgent to be solved. Therefore, we propose a prediction algorithm for smart grid stability based on Convolutional Neural Network (CNN). It collects the data generated by the power network, processes them in the CNN model, and finally outputs the judgment results of smart grid stability. The simulation results show that the algorithm has higher accuracy than SVM, AdaBoost, and random forest. Furthermore, four different optimization algorithms are used to improve the CNN model. SGD algorithm with momentum can achieve a prediction accuracy of 98.13%. The proposed model can effectively help the power system to pre-warn the unknown problems, reducing the security risks and power accidents.

    参考文献
    相似文献
    引证文献
引用本文

吕超,朱雪阳,丁忠林,丁仪,朱秋阳.基于5G与CNN的智能电网稳定性预测.计算机系统应用,2021,30(7):158-164

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-06
  • 最后修改日期:2020-12-12
  • 录用日期:
  • 在线发布日期: 2021-07-02
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号