基于改进降噪自动编码器的点击率预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河北省重点研究计划(20371801D)


Click-Through Rate Prediction Based on Improved Denoising Autoencoder
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    点击率(CTR)预测是个性化广告和推荐系统中的一项基本任务. 针对提升点击率预测效果和处理冷启动问题, 本文中提出了一种基于改进降噪自动编码器的点击率预测模型ADVAE (ADditional Variational AutoEncoder), 该模型在输入数据加入高斯随机噪声, 利用改进的降噪自动编码器生成新的嵌入特征, 然后分别进行低阶和高阶的特征交互来预测用户点击行为. 该方法可以在数据稀疏以及系统冷启动情况下, 更深层地学习特征嵌入与交叉之间的关系. 该模型关注特征域之间的交互, 动态修复低频数据的特征嵌入, 具有更强的鲁棒性. 此外, 该方法可以动态应用到其他深度学习模型, 具有更高的灵活性. 实验结果表明, 该方法在点击率预测和系统冷启动问题上的性能表现均优于现有方法.

    Abstract:

    Click-Through Rate (CTR) prediction is a fundamental task in personalized advertising and recommendation systems. This study proposes a model named ADditional Variational AutoEncoder (ADVAE) based on an improved denoising autoencoderto improve CTR prediction and cold-start. It adds random Gaussian noise to the input data and generates new embedded features by the improved denoising autoencoder. Then, multi-level features interact to predict the users’ clicking. This method can learn the relationship between feature embedding and interactions in data sparse and cold-start situations. In addition, it has strong robustness since it focuses on the interaction in feature domains and dynamically repairs feature embedding of low-frequency data. Besides, this method can be dynamically applied to other deep learning models, with high flexibility. The results show that the proposed approach outperforms its counter parts in terms of CTR prediction and cold-start.

    参考文献
    相似文献
    引证文献
引用本文

刘勐,王洪波,王富豪,李亚峰.基于改进降噪自动编码器的点击率预测.计算机系统应用,2021,30(6):231-237

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-11
  • 最后修改日期:2020-11-05
  • 录用日期:
  • 在线发布日期: 2021-06-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号