基于RS-CSA-ELM的WSN节点故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fault Diagnosis of WSN Nodes Based on RS-CSA-ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为及时发现WSN节点故障隐患, 准确掌握WSN运行状态, 本文利用粗糙集理论属性约简算法(简称RS)对WSN节点故障属性进行约简, 以最优的故障属性决策表重构训练样本数据集, 作为极限学习机(Extreme Learning Machine, ELM)神经网络的输入, 建立一个数据驱动的WSN节点故障断模型. 采用乌鸦搜索算法(Crow Search Algorithm, CSA)优化 ELM 神经网络的输入权值和隐含层阀值, 改善网络参数随机生成带来的 ELM 模型输出不稳定、分类精度偏低的问题. 通过对 RS-GA-ELM模型进行仿真分析. 结果表明, RS-GA-ELM模型能够在可靠性不同的数据集中, 保持较高的故障诊断效率, 符合WSN节点故障诊断的需求.

    Abstract:

    In order to discover the hidden troubles of WSN nodes in time and accurately know the running status of WSN, this paper uses the attribute reduction algorithm of rough set theory (RS for short) to reduce the fault attributes of WSN nodes, and reconstructs the training sample data set with the optimal fault attribute decision table as an input to the Extreme Learning Machine (ELM) neural network. In this way, a data-driven fault diagnosis model of WSN nodes is established. The input weights and hidden layer thresholds of the ELM neural network are optimized through Crow Search Algorithm (CSA) to alleviate the unstable output and improve the low classification accuracy of the ELM model caused by the random generation of network parameters. Simulation analysis of the RS-GA-ELM model is carried out. The results show that the RS-GA-ELM model can keep efficiently diagnose faults in data sets with different reliability, which meets the needs of fault diagnosis of WSN nodes.

    参考文献
    相似文献
    引证文献
引用本文

余正军.基于RS-CSA-ELM的WSN节点故障诊断.计算机系统应用,2021,30(3):221-226

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-16
  • 最后修改日期:2020-08-13
  • 录用日期:
  • 在线发布日期: 2021-03-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号