基于门控循环单元网络的输电杆塔螺栓紧固检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61773166)


Transmission Tower Bolt-Fastening Detection Based on Gated Recurrent Unit Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输电塔杆螺栓紧固检测是保障高压电网安全的重要依据, 传统的人工检测方法需要员工爬上输电杆塔检测操作, 通常伴有一定程度的风险, 而采用无人机巡检受许多外在的因素的影响, 其检测效果并不理想. 因此, 本文提出一种基于门控循环单元网络的输电杆塔螺栓紧固检测方法, 利用振动传感器和传感分析仪构建一套采集输电铁塔声波数据的作业流程, 提取训练样本中声波数据的线性预测倒谱系数LPCC构成特征向量; 训练门控循环单元网络(Gated Recurrent Unit, GRU)分类模型从而检测未知紧固状态的声波样本, 实验结果达到实用分析性能. 通过本算法的应用, 解决了在检测输电铁塔螺栓紧固问题上传统方法上的人力和方法性能问题.

    Abstract:

    The bolt-fastening detection of transmission towers is critical to the safety of high-voltage power grids. Traditional detection methods are often risky it needs manual detection high on transmission towers. What’s more, UAV detection fails to live up to our expectation affected by multiple external factors. Therefore, this study proposes a bolt-fastening detection method for transmission towers based on Gated Recurrent Unit (GRU) networks. Specifically, the vibration sensor and sensor analyzer are used to construct a work flow for collecting acoustic wave data of transmission towers, and then the Linear Predictive Cepstral Coefficients (LPCCs) of acoustic wave data in training samples are extracted to form feature vectors. The classification model of GRU networks is trained to predict unknown fastened acoustic wave samples. As a result, this method is practical. The application of this algorithm can avoid the much manpower of traditional ones and is superior to them in bolt-fastening detection of transmission towers.

    参考文献
    相似文献
    引证文献
引用本文

鲁炜,顾安琪,骆昊骏,朱炜,王火根,文颖.基于门控循环单元网络的输电杆塔螺栓紧固检测.计算机系统应用,2021,30(4):277-282

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-29
  • 最后修改日期:2020-08-26
  • 录用日期:
  • 在线发布日期: 2021-03-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号