改进生成对抗网络在场景图像转换中的应用
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFB1700702)


Application of Improved Generative Adversarial Network in Scene Image Translation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对不同场景图像之间的转换问题, 提出了一种改进的生成对抗网络模型, 能够生成高质量的目标场景图像. 在生成目标图像过程中存在因为向下采样而丢失原图像空间位置信息的现象, 因此本文设计了一个包含跳跃连接和残差块的生成网络, 通过在网络中加入多个跳跃连接部分, 将图像的空间位置信息在网络中保持传递. 同时为提高训练过程中生成图像在结构上的稳定性, 引入SSIM图像结构相似指数, 作为结构重建损失, 以指导模型生成更优结构的目标图像. 此外, 为使得转换后的目标场景图像保留更多的色彩细节, 加入了身份保持损失, 明显增强了目标生成图像的色彩表现力. 实验结果表明, 本文所提的改进生成对抗网络模型能够在场景图像转换中得到有效地应用.

    Abstract:

    Aiming at the translation between different scene images, we propose an improved generative adversarial network model that can generate high-quality target scene images. In the process of generating a target image, the spatial position information of the original image will lose due to down sampling. Therefore, a generative network that includes jump connections and residual blocks is designed in this paper. By adding multiple jump connections to the network, we can keep the spatial position information of the image transmitting in the network. At the same time, to improve the stability of the generated image during the training, we introduce the Structural Similarity Index Measure (SSIM) as a structure reconstruction loss to guide the model to generate a target image with a better structure. In addition, in order to make the translated target scene image retain more color details, we add an identity preservation loss, obviously enhancing the color expressiveness of the target generated image. The experimental results show that the improved generative adversarial network model proposed in this study can be effectively applied in scene image translation.

    参考文献
    相似文献
    引证文献
引用本文

金阳,何利力.改进生成对抗网络在场景图像转换中的应用.计算机系统应用,2021,30(3):151-157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-18
  • 最后修改日期:2020-08-13
  • 录用日期:
  • 在线发布日期: 2021-03-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号