摘要:中文关系抽取采用基于字符或基于词的神经网络, 现有的方法大多存在分词错误和歧义现象, 会不可避免的引入大量冗余和噪音, 从而影响关系抽取的结果. 为了解决这一问题, 本文提出了一种基于多粒度并结合语义信息的中文关系抽取模型. 在该模型中, 我们将词级别的信息合并进入字符级别的信息中, 从而避免句子分割时产生错误; 借助外部的语义信息对多义词进行建模, 来减轻多义词所产生的歧义现象; 并且采用字符级别和句子级别的双重注意力机制. 实验表明, 本文提出的模型能够有效提高中文关系抽取的准确率和召回率, 与其他基线模型相比, 具有更好的优越性和可解释性.