基于煤矿井下传送带空载检测
作者:
基金项目:

山西省中科院科技合作项目(20141101001); 山西省重点研发计划(一般)工业项目(201703D121042-1); 太原科技大学校博士科研启动基金(20162036); 山西省社会发展科技项目(20140313020-1)


No-Load Detection of Underground Conveyor Belt in Coal Mine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    煤矿井下传送带在无煤或煤量较少的状态下长时间高速运转, 会耗费大量的电能. 为了节省井下传送带造成的电能损耗, 本文提出了一种边缘结构相似算法和YOLOv3结合的传送带空载判定方法. 通过边缘结构相似算法将结构特征和边缘特征相融合, 每相邻10帧比较图片的相似度, 连续比较3次判断传送带的运行状态. 若传送带运行, 则运用自适应锚框机制的YOLOv3模型, 检测传送带上的煤量, 最后判断传送带是否空载. 实验结果表明, 该方法可以有效准确的判断传送带的空载状态, 检测准确率达到96.85%.

    Abstract:

    The long-time and high-speed running of an underground conveyor belt in a coal mine will consume a lot of electricity in the case of no coal or little coal. In order to reduce the electricity loss caused by the underground conveyor belts, we propose a no-load determination method of the conveyor belts combining the YOLOv3 algorithm with the edge-based structural similarity algorithm. First, the structure features and edge features are fused by the edge-based structural similarity algorithm. Then, the similarity of adjacent 10 frames of images is successively compared three times to judge the running state of a conveyor belt. If the conveyor belt is running, the YOLOv3 model based on the adaptive anchor box mechanism is used to detect the coal amount on the conveyor belt. Finally, whether the conveyor belt carries a load or not is judged. The experimental results show that the proposed method can effectively and accurately judge the no-load state of the conveyor belts and the detection accuracy reaches 96.85%.

    参考文献
    [1] 杨鲁振, 王猛, 王登科, 等. 煤矿自动化控制技术在皮带运输中的应用. 山东工业技术, 2018, (15): 71
    [2] 祝双强, 赵新平, 李晓强. 煤矿节能增效管控系统在阳煤五矿的应用. 中国石油和化工标准与质量, 2020, 40(1): 141–142. [doi: 10.3969/j.issn.1673-4076.2020.01.071
    [3] 张远. 基于煤量检测的煤矿顺煤流调速控制系统[硕士学位论文]. 天津: 天津大学, 2017.
    [4] 王雪枫. 变频技术在煤矿节能中的应用探讨. 资源节约与环保, 2019, (9): 42. [doi: 10.3969/j.issn.1673-2251.2019.09.043
    [5] 刘鸿利. 基于载荷检测的煤矿带式输送机控制系统. 工矿自动化, 2018, 44(10): 81–84
    [6] 丁忠彦. 变频技术在煤矿皮带机改造中的应用分析. 技术与市场, 2019, 26(4): 149–150. [doi: 10.3969/j.issn.1006-8554.2019.04.065
    [7] 程健, 王东伟, 杨凌凯, 等. 一种改进的高斯混合模型煤矸石视频检测方法. 中南大学学报(自然科学版), 2018, 49(1): 118–123. [doi: 10.11817/j.issn.1672-7207.2018.01.016
    [8] 张瑞勋, 邵秀丽, 骆圣丽, 等. 基于Faster R-CNN模型的传送带药盒与空位检测方法. 计算机与现代化, 2019, (9): 122–126. [doi: 10.3969/j.issn.1006-2475.2019.09.022
    [9] Zhou W, Bovik AC, Sheikh HR, et al. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. [doi: 10.1109/TIP.2003.819861
    [10] 魏政刚, 袁杰辉, 蔡元龙. 图象质量评价方法的历史、现状和未来. 中国图象图形学报, 1998, 3(5): 386–389. [doi: 10.3969/j.issn.1006-8961.1998.05.008
    [11] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA. 2014. 580–587.
    [12] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA. 2016. 779–788.
    [13] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot MultiBox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands. 2016. 21–37.
    [14] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 6517–6525.
    [15] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv: 1804.02767, 2018.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

成彦颖,白尚旺,党伟超,潘理虎,吴喆峰.基于煤矿井下传送带空载检测.计算机系统应用,2021,30(3):171-176

复制
分享
文章指标
  • 点击次数:952
  • 下载次数: 2342
  • HTML阅读次数: 1443
  • 引用次数: 0
历史
  • 收稿日期:2020-06-11
  • 最后修改日期:2020-07-10
  • 在线发布日期: 2021-03-06
文章二维码
您是第11183389位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号