摘要:智能电网的快速发展给电网运行带来了新的挑战, 为适应智能电网快速响应的要求, 实现对电力负荷未来运行趋势的快速估计, 本文提出一种基于LSSVM模型的超短期电力负荷区间预测方法, 所提方法在点预测的基础上, 通过对样本数据的整体噪声方差进行估算来预测区间, 计算量小且大大减少了预测耗时. 在模型参数选取问题上, 首先使用Gamma Test噪声估计的参数确定方法确定最优的训练样本量和嵌入维数, 然后采用网格搜索的方法选择最优超参数, 使LSSVM模型在训练样本上的拟合误差逼近估计出的最小噪声. 为验证本文所提方法的有效性, 使用某电网的调度负荷数据进行了仿真实验, 其结果表明该方法不仅能够体现LSSVM简单快速的特点, 还通过对模型参数的优化使预测区间的准确性得到了保证.