基于生成对抗网络的图像清晰度提升方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Improved Image Sharpness Method Based on Generative Adversarial Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视频监控、军事目标识别以及消费型摄影等众多领域对图像清晰度有很高的要求. 近年来, 深度神经网络在视觉和定量评估的应用研究中取得较大进展, 但是其结果一般缺乏图像纹理的细节, 边缘过度平滑, 给人一种模糊的视觉体验. 本文提出了一种基于生成对抗网络的图像清晰度提升方法. 为了更好的传递图像的细节信息, 采用改进的残差块和跳跃连接作为生成网络的主体架构, 生成器损失函数除了对抗损失, 还包括内容损失、感知损失和纹理损失. 在DIV2K数据集上的实验表明, 该方法在提升图像清晰度方面有较好的视觉体验和定量评估.

    Abstract:

    Video surveillance, military object recognition, consumer photography, and many other fields have high requirements for image sharpness. In recent years, deep neural networks have made great progress in the applied research on visual and quantitative evaluation, but the results generally lack the details of image textures, and the edges are too smooth, providing blurry visual experience. For this reason, we propose a method of improving image sharpness based on the generative adversarial network in this study. In order to better delivery the image details, this method adopts the improved residual block and skip connection as the main structure of the generative network, and the generator loss function consists of content loss, perception loss, and texture loss in addition to adversarial loss. Finally, the experiments on the DIV2K dataset prove that the proposed method exhibits good visual experience and quantitative evaluation in terms of improving image sharpness.

    参考文献
    相似文献
    引证文献
引用本文

范晓烨,王敏.基于生成对抗网络的图像清晰度提升方法.计算机系统应用,2021,30(2):176-181

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-10
  • 最后修改日期:2020-07-10
  • 录用日期:
  • 在线发布日期: 2021-01-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号