基于深度学习的围栏跨越行为检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Deep Learning-Based Detection Method of Fence Crossing Action
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在作业现场的安全管理中, 对于非施工人员围栏跨越的监管一直是必不可少的. 但目前施工场地普遍存在作业面广、施工人员管理困难等问题, 导致人工监察的方式效率低下. 而基于视频的人体行为检测技术作为计算机视觉领域重要的研究热点, 在公共安全监控方面有着广泛应用. 因此针对传统人工监察的不足, 结合当前计算机视觉技术, 提出一种智能化的围栏跨越违规检测与识别方法. 该方法通过监控不断获取视频帧, 以视频帧组成的剪辑作为输入, 使用三维卷积和二维卷积分别提取时序和空间特征, 将两部分特征融合后进行分类和边界框回归. 最后通过设置对比试验以验证此方法效果, 实验结果表明, 该方法具有一定的泛化性.

    Abstract:

    In the safety management of the operation sites, the supervision of fence crossing by non-construction personnel has always been essential. However, at present, there are many problems in the construction sites, such as a wide range of operation and a difficulty in the management of construction personnel, leading to the inefficiency of manual supervision. As an important research hot spot in the field of computer vision, video-based human action detection is widely used in public security monitoring. Therefore, in view of the shortcomings of the traditional manual supervision, in combination with the current computer vision technology, an intelligent detection and recognition method for fence crossing violations is proposed in this paper. In this method, video frames are acquired continuously through monitoring, and clips composed of video frames are taken as input. In addition, temporal and spatial features are extracted by 3D and 2D convolutions respectively. After fusion of the two parts of features, classification and boundary box regression are carried out. Furthermore, a comparative experiment is conducted to verify the effect of this method. The experimental results show that the proposed method can detect the fence crossing behavior accurately in a short time, featuring strong working ability.

    参考文献
    相似文献
    引证文献
引用本文

房凯.基于深度学习的围栏跨越行为检测方法.计算机系统应用,2021,30(2):147-153

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-09
  • 最后修改日期:2020-07-07
  • 录用日期:
  • 在线发布日期: 2021-01-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号